本站小編為你精心準備了原子層沉積金屬材料論文參考范文,愿這些范文能點燃您思維的火花,激發您的寫作靈感。歡迎深入閱讀并收藏。
ALD技術的基本過程是將氣相前驅體脈沖交替地通入反應腔,在沉積基底上發生表面化學吸附反應,進而形成薄膜。它并非是一個連續的工藝過程,而是由一系列的半反應組成。它的每一個單位循環通常分為四步,如圖1[6]所示:首先,向反應腔通入前驅體A蒸氣脈沖,在暴露的襯底表面發生化學吸附反應;然后,通入清洗氣體(通常為惰性氣體,如高純氮氣或氬氣),將未被吸附的前驅體A蒸氣及反應副產物帶出反應腔;接著通入前驅體B蒸氣脈沖,與表面吸附的A發生表面化學反應;最后再次通入清洗氣體,將多余的B蒸氣及反應副產物帶出反應腔。圖1中L為前驅體配位基。理論上每進行一個循環,基底表面沉積一層單原子層(monolayer,ML)。對于ALD的經典反應,即三甲基鋁和水反應生成Al2O3的反應,其每個循環過程包含了兩個半反應。每個半反應都是自終止的,包括吸附、化學反應和解吸附等過程,具有自限制和互補性的特點。生長速度通常為每循環0.1nm。因此,控制循環次數就可簡單精確地控制膜厚。可見,表面自限制反應是ALD的生長基礎。理想的ALD工藝一般存在ALD工作窗口,在此窗口內,生長速度恒定,對工藝參數的變化,如前驅體流量、脈沖時間和沉積溫度等不敏感,沉積的薄膜具有大面積的均勻性和優異的三維貼合性。隨著微電子芯片單元尺寸不斷減小,器件中的深寬比不斷增加,所使用材料的厚度降低至幾個納米。ALD之所以受到微電子工業和納米材料制備領域的青睞,與它獨特的生長原理和特點密不可分,特別適合復雜三維形態表面的納米薄膜沉積,尤其是深孔洞的填隙生長,圖2[7]所示為采用ALD方法在高深寬比結構內部均勻沉積的金屬釕膜[7]。ALD雖然是一種嶄新的材料制備技術,但經過近十幾年的快速發展,在傳統的熱ALD基礎上,發展出等離子體增強ALD(plasmaenhancedatomiclayerdeposition,PEALD)、空間ALD、分子層沉積和電化學ALD等多種新形式[6]。其中,PEALD獲得了廣泛的關注和應用。PEALD是一種能量增強輔助的ALD,在生長中引入等離子體取代了普通的反應劑,提高了反應劑活性,從而能夠降低沉積溫度,拓寬前驅體和生長薄膜材料種類,提高生長速度,改進薄膜性能[8]。對于沉積金屬薄膜而言,PEALD無疑提供了更多的可能性,極大拓寬了金屬材料生長種類。
2原子層沉積金屬及其反應生長機理
由以上ALD基本反應原理可以看出,典型的ALD反應過程近似是一種置換反應,比如沉積金屬氧化物、硫化物和氮化物等,最常見的方法就是金屬前驅體與其對應的氫化物(H2O,H2S和NH3)反應,金屬前驅體與這些反應助劑交換它們的配體,從而獲得相應的化合物。對于沉積純金屬而言,需要的則是還原金屬態,移除與金屬原子連接的配合基。因此,探究金屬前驅體及相應反應助劑的選擇、金屬前驅體在已沉積表面的吸附情況、反應初始循環的化學過程等,了解和掌握原子層沉積金屬的反應生長原理,就變得十分關鍵。而在ALD生長過程中引入原位表征與監控方法,無疑是一種有效的手段,可收集獲取與表面化學反應、生長速度、化學價態和光學特性等相關的重要信息。目前原位探測手段主要包括:傅里葉變換紅外光譜儀(Fouriertransforminfraredspec-troscopy,FTIR),能夠實時觀測每個半反應后的表面基團,為具體的表面吸附及化學反應提供有力的證據;石英晶振儀(quartzcrystalmicroba-lance,QCM),可分析每個脈沖結束后表面的質量變化,吸附時質量的增加,副產物移除時質量的減少,還能一定程度地反映出化學反應中熱量變化情況;四極質譜儀(quadrupolemassspectroscopy,QMS),能夠探測脈沖過程中反應腔內的物質組成,分析反應產物及反應進行狀態。另外還可配備原位光電子能譜儀,對生長過程中表面的化學組成和價態進行表征,原位橢偏儀對沉積薄膜厚度和光學特性進行測量。下面結合原位監控手段,就ALD沉積貴金屬、過渡金屬和活潑金屬的反應機理和特點分別進行介紹。
2.1貴金屬在ALD生長中,貴金屬一般是利用貴金屬有機化合物和氧氣進行反應生成。因為與形成化合物相比,以鉑為代表的貴金屬更容易生成穩定的金屬單質。氧氣作為其中一個反應物將增強這種趨勢,金屬前驅體的有機配體被氧化,兩個半反應過程中均有燃燒產物CO2和H2O放出,使ALD生長貴金屬的反應就像是氧氣燃燒掉了金屬的烴基,故命名為燃燒反應。這類貴金屬的反應主要發生在常用于非均相催化的第八族貴金屬中,其機理目前已經有較為詳盡和確切的研究[9],圖3[9]顯示了ALD沉積金屬鉑和銥過程中原位QCM和QMS監測的結果。使用的金屬有機前驅體分別是甲基環戊二烯三甲基鉑和乙酰丙酮銥。圖3(a)和(d)為QCM隨鉑/氧/鉑/氧的脈沖變化而探測到的厚度變化,圖中Δm0表示鉑前驅體吸附在襯底表面后帶來的厚度增長,Δm1表示經氧氣脈沖反應,該循環沉積鉑或銥的凈增長厚度。圖3(b)和(e)為QMS探測到質荷比為15的物質,即CH3的信號強度,其脈沖信號分別對應鉑源和銥源脈沖。圖3(c)和(f)為QMS探測到質荷比為44的物質,即CO2的信號強度,其脈沖信號對應氧氣脈沖。CH3與CO2是ALD過程中最主要的兩種含碳氣態副產物。圖3中t為時間,d為沉積厚度。鉑前驅體脈沖時QMS觀測到CH4,說明鉑前驅體發生配位基互換,吸附到羥基等襯底活性氧表面。同時QCM顯示出鉑前驅體脈沖時質量增加,氧氣脈沖時則略微減小,綜合考慮到沒有探測出CO,只有CO2,CH4和H2O三種氣相產物,可以認為發生的是完全燃燒反應。鉑前驅體脈沖和氧氣脈沖過程中都有CO2和H2O放出,這是因為氧氣脈沖后有部分氧氣殘留吸附在淺層表面,從而在下一個金屬前驅體脈沖時直接氧化少量有機配體,大部分有機配體留至再下一個氧氣脈沖通入時燃燒掉。貴金屬非常抗氧化,但分子氧可以在它們表面可逆吸附和解離,銥、鉑和釕尤其如此,使氧化、燃燒其配體可以高效進行。由此,貴金屬ALD過程中自終止半反應,并非是由于表面羥基給配體加上了氫,而是在表面鉑等金屬催化下,配體發生了脫氫[10]。式(3)中,鉑前驅體配體置換吸附在表面,部分配體與表面吸附氧發生燃燒反應;式(4)中,氧氣脈沖燒掉剩余配體,在鉑表面又留下含氧基,包含催化和表面化學的作用,以此形成循環反應。圖3(d)[9]是ALD沉積銥反應中原位監測結果,可以看出其生長過程與鉑非常近似。在其他一些研究中,釕和銠的ALD沉積也被證實與此反應機制相符。值得注意的是,氧化物表面ALD沉積貴金屬總是會有一個較長的成核孕育期,因為金屬與氧化物表面是不浸潤的,多相催化的相關研究已經指出,金屬在氧化物表面傾向于形成團簇[14]。而成核孕育期因為要移除鍵合在氧化物表面的金屬配體有一定困難,加之氧化物表面的貴金屬原子有發生擴散和聚集的傾向,從而形成分立的金屬顆粒。因此沉積貴金屬的初期總是先形成分散的金屬島,然后再逐漸長大,金屬顆粒彼此連接形成連續薄膜[11]。圖4[15]為ALD沉積Pt不同反應循環次數影響Pt納米晶形成的透射電鏡TEM照片,非常形象地展示了這個過程。影響成核的因素十分復雜,成核情況與襯底表面親水性、電負性、表面組成和粗糙度都有一定關聯。其中,所沉積的金屬與襯底的潤濕性是非常關鍵的因素,因此,襯底表面的基團種類十分重要。如襯底基團的親水性會給ALD帶來活性反應位,因此表面親水性的羥基越多,成核越快。在浸潤性好、成核快的襯底上,金屬膜層才更容易長薄長均勻[16]。在不同的應用中,對金屬成核還是成膜的要求會有所不同,如金屬納米晶存儲器中,就希望獲得高密度均勻分布的金屬納米晶。因此,實際ALD生長應用中,還需要結合具體需要進行分析調控。
2.2過渡金屬不同于抗氧化的貴金屬,ALD沉積其他金屬都需要選擇合適的還原劑。常見的還原劑如氫氣、氨氣及其等離子體,都已被用于ALD沉積過渡金屬的反應中。目前ALD生長過渡金屬的反應機制,主要分為三類:氫還原反應、氧化物還原和氟硅烷消去反應。由于銅互連在微電子工業中的重要性,因此最初在ALD中利用氫還原反應生長的金屬是銅,銅很難黏附在SiO2表面,由于在其上成核密度較低,導致膜層表面粗糙度較大,均方根RMS值為6nm。若先行ALD沉積其他金屬籽晶層鈷、鉻和釕等,銅膜粗糙度就會有明顯改善,在ALD生長的鈷膜上,銅膜的RMS值減少到2nm,晶粒粒徑也會明顯變?。?7]。另外高溫制備微電子器件時,銅還會擴散到SiO2或Si襯底內,因此在銅和Si之間需要一個超薄的阻擋層,熱穩定性好又具有高黏附力,厚度還應小于5nm。ALD沉積的金屬薄膜釕和鎢可作為銅互連的擴散阻擋層。金屬銅理想情況應該在100℃以下沉積,低溫限制了表面遷移率,使金屬原子在膜層很薄時最大限度減少晶核團聚成島狀的趨勢,膜層長厚時就更為平整光滑。但由于許多銅前驅體活性較低,通常都需用200℃以上的高溫沉積或需用等離子體源來增強反應活性[18]。目前ALD沉積銅的前驅體和還原劑種類很多,生長條件也各不相同。以[Cu(sBu-amd)]2的脒基配體與硅襯底的反應為例,由紅外光譜探測分析可知,銅前驅體通入后,配體受熱激發與表面羥基發生加氫反應,橋接結構置換為單配位基Si-Cu-O鍵結構。隨后氫氣脈沖通入還原,銅失去了脒基配體,同時有一部分硅氧鍵恢復,意味著銅原子得以擴散并聚集成為結晶的納米顆粒。因為銅與硅氧襯底的鍵斷裂,從而部分恢復了原始表面的反應位,使配位基置換反應得以繼續進行。然而檢測也發現有明顯的CuO和COOH殘留,CuO可能來自沉積后非原位探測造成的空氣氧化或者是Cu與COOH的鍵合,說明即使在氫氣作用下發生了還原反應,仍沒能完全還原全部配體[19]。除此之外,沉積銅還可以采用其他還原劑,比如銅前驅體先與甲酸反應生成二價銅甲酸鹽,再由聯氨還原成銅,此反應能在120℃的低溫下沉積,生長窗口為100~160℃,得到的膜層純度高、電阻率低,表面粗糙度僅為3.5nm[20]。該沉積過程中銅符合ALD自限制生長模式,存在一個ALD工作窗口,如圖5[20]所示。圖5中,vGPC為每個循環的生長速率,tp為脈沖時間,θ為溫度。ALD沉積銅還有其他的間接方法,即先沉積金屬氧化物或氮化物,再通入還原劑將其還原為金屬態。前面提到銅很難吸附在微電子相關特定結構的任何表面,采用這樣先氧化的辦法,還可以改善表面吸附性。異丙醇、福爾馬林、氫氣和甲酸等都可以充當還原劑,文獻[]中還提到這種方法降低了膜層的粗糙度。同樣采用先氧化后還原方法ALD沉積的金屬還有鎳。在ALD沉積金屬氧化物的過程中,有機金屬前驅體與表面的氧化物或金屬—OH基團發生反應。如可以利用乙酰丙酮鎳和臭氧反應得到氧化鎳膜層,再用氫氣還原得到金屬鎳膜[24]。但是也有研究指出,這樣還原得到的Ni結構略微有所缺陷,膜層內有小孔。如果直接沉積金屬鎳,一般的還原條件均難以滿足,需要的沉積溫度較高,沉積速度也非常緩慢。氫還原反應適用的金屬還包括過渡金屬鈷。一般來說,對于金屬前驅體,親水的羥基終端比疏水的氫終端活性更高,前驅體更易發生吸附,也就更適合做ALD初始反應的表面。但鈷的常用前驅體tBu-AllylCo(CO)3的表現卻完全相反,它在—OH終端的SiO2表面完全沒有吸附,而對—H終端的Si襯底則表現出強烈的活性。這里,Co前驅體不是在吸附到—H終端Si襯底表面的同時就失去一個配體,它首先橋接在Si—H之間形成Si—Co鍵,再被這個表面氫除掉一個丙烯基,如圖6[19]所示。羥基終端不能形成這樣的機制,所以該前驅體與Si襯底氫終端吸附結合的活性反而更強,這一機制也保證了鈷膜的高純度[25]。另外一些關于前驅體修飾的研究,還注意到中性配位體的益處。羰基就可作為中性配位體,連的羰基越多,金屬可用的電子密度越小,金屬-羰基鍵就越弱,可以增強前驅體的揮發性。羰基配體的最典型的實例就是八羰基二鈷前驅體,用氨等離子體還原,制備金屬鈷。這類利用氨等離子體還原的反應機理目前還不是很清楚,但是通過觀察反應副產物,表明ALD沉積這些過渡金屬時,氨解反應具有一定的作用。除此之外,還有一類還原反應是利用主族元素氫化物作還原劑,這類氟硅烷消去反應的過程通常是σ鍵置換、氧化加成/還原消除反應,適用于金屬鎢和鉬的ALD沉積。用硅烷或者硼烷還原金屬氟化物,能得到標準的半反應式沉積[26]。但是鎢和鉬兩種元素在具體的反應上還是有所不同,乙硅烷輸入時鉬質量有所損失而鎢有所增長,較高溫度下鉬的沉積速度會相應增加,這可以認為是由前驅體的熱分解所致。此外,如果溫度過高或硅烷曝光過多將可能導致硅烷嵌入Si—H鍵出現Si的CVD反應,而且此類反應的機理對其他金屬元素不能通用,比如鉭若用此種反應就會形成硅化物薄膜。
2.3活潑金屬正電性金屬包括鋁、鈦、鐵、銀和鉭等。以銀為例,由于它的化合物都是+1價,只有一個配合基鍵合的金屬離子很難發生吸附,所以需要一些電中性的加合物配位基,通過它們的置換,輔助金屬陽離子吸附到襯底。不過這種配位基的鍵合往往很弱,ALD成功沉積銀的報告中使用的銀前驅體是(hfac)Ag(1,5-COD)[29],其中COD即為上述輔助銀離子吸附的中性配體。當COD被置換,實驗觀察到吸附在襯底的銀有足夠的表面遷移率和壽命,能在隨后的高純氮氣清洗的步驟時沿襯底表面擴散并成核。在下一步丙醇的脈沖過程中,由于醇類的催化氧化析氫作用,多余的hfac配體得以移除,從而得到沉積的金屬銀。圖8[30]是ALD在溝槽結構襯底上沉積銀薄膜的掃描電鏡照片,這里使用的前驅體是Ag(O2CtBu)(PEt3)[30]。然而文獻[31]中也指出,由此得到的膜層生長速度緩慢,薄膜質量不甚理想,沒有一般金屬薄膜有光澤,看起來偏暗,同時電阻率也很高。其他的如鋁,三甲基鋁在200℃下自然分解的產物應該是Al4C3,這時如果提供氫氣氣氛,或者借助等離子體、光子等提供額外的能量,理論上有可能形成金屬鋁。然而目前的研究工作還非常粗略,而且反應要求沉積氣氛壓力低、還原氣體純度高,才能保證Al在沉積過程中不被氧化。這些活潑金屬具有廣闊應用前景,這不僅是由于其優異的導電性能,還在于其有可能在銅互連中用于黏附層和阻擋層,更是由于近來倍受關注的銀表面等離激元的性質。但它們都較難還原或難與碳氮氧結合成較強的化學鍵,其常見的前驅體在熱ALD中需要的生長溫度太高,一般適用的襯底和結構都不足以承受如此高溫,所以基本都需要使用氫等離子體以降低反應活化能。但是即便如此,利用等離子體沉積得到的活潑金屬膜層一般都很薄,并且一旦暴露于空氣中就極易氧化,一般需要原位沉積保護層防止氧化,所以總體來說獲得的活潑金屬薄膜的金屬性都不強。目前ALD反應沉積活潑金屬,只有少量沉積成功的報告和一些很初步的工藝探索,實驗結果大多還不盡如人意,因此,其ALD沉積反應路徑和機理尚有待于繼續開拓和探究。
3原子層沉積金屬面臨的挑戰
在上述已經成功沉積的金屬中,最好的鎳、鈷膜層和僅有的錳、鈦薄膜都是利用PEALD沉積的,可見PEALD在沉積金屬薄膜中的重要地位。但是,PEALD對微電子器件的制備并非完美無缺,等離子體的高活性可能對某些應用所需的特殊襯底造成損傷,又因為等離子體極易在表面復合,從而不宜沉積高深寬比的襯底??偠灾?,ALD沉積過渡金屬普遍面臨的難題是用來還原金屬前驅體的反應物的還原性不夠強。之前提到的主族元素氫化物是比較有潛力的反應機制,如硼烷中B—H鍵能夠將氫轉移到金屬原子上,生成過渡金屬氫化物,而這些氫化物大多不穩定。另一種可能的途徑是尋找一些電子輸運能力強的反應物,如二茂鈷Co(C5H5)2,升華溫度很低且有足夠的電化學勢來還原一些過渡金屬離子。若要付諸實踐,這些方法還需進一步檢驗,保證副產物都是氣態且不會有其他雜質沉積[31]。除上述金屬之外,金也是很重要的金屬,不僅在于它的高導電率,還在于其特殊的催化和光學性質。而金的沉積對ALD技術來說,目前還是個挑戰。與銀相同,金的化合物也都是+1價,金配合物的熱穩定性都不高?,F在也有各種激活方法,比如激光活化、離子體增強、電子或離子束輔助等,但至今為止,還沒有一種反應模式能夠成功應用于ALD沉積金屬金中。至于其他堿金屬、堿土金屬和稀土金屬,其沉積難度更是有過之而無不及。但這些元素的應用需求也很有限,局限在有機發光二極管和鋰電池中。而元素周期表右側那些主族金屬,目前也尚未見ALD沉積的報道。從電負性和還原性的角度來看,這些主族金屬與第四周期的過渡金屬相似,應該比那些活潑金屬容易沉積。對ALD來說,沉積盡管同樣富于挑戰,但也并非不可能,還需要更深入與廣泛的研究來豐富ALD沉積金屬的種類。表1總結了目前為止ALD沉積金屬的主要種類與反應類型,并附列了代表性文獻。
4結語
ALD沉積金屬薄膜和納米結構,已經在微電子、催化、燃料電池、氣體傳感和光學等諸多領域受到工業界和學術界的廣泛關注。盡管ALD沉積金屬材料方面已經取得了很多進展,但同氧化物、氮化物等材料廣泛深入的研究相比,還處在快速發展中。由于缺乏合適的前驅體或者足夠活性的還原劑,使一些ALD金屬沉積尚難以進行,一些新的反應路徑和機制有待于發現。目前ALD沉積金屬方面,挑戰與機遇并存,相信通過廣大科研工作者的持續探索和努力,必將在ALD沉積金屬的理論和應用研究上,取得更大的進展和突破。
作者:朱琳李愛東單位:南京大學現代工程與應用科學學院固體微結構物理國家重點實驗室