美章網(wǎng) 資料文庫(kù) 塊狀金屬應(yīng)用范文

    塊狀金屬應(yīng)用范文

    本站小編為你精心準(zhǔn)備了塊狀金屬應(yīng)用參考范文,愿這些范文能點(diǎn)燃您思維的火花,激發(fā)您的寫作靈感。歡迎深入閱讀并收藏。

    塊狀金屬應(yīng)用

    自80年代初德國(guó)科學(xué)家H.V.Gleiter成功地采用惰性氣體凝聚原位加壓法制得純物質(zhì)的塊狀納米材料后[1],納米材料的研究及其制備技術(shù)在近年來引起了世界各國(guó)的普遍重視。由于納料材料具有獨(dú)特的納米晶粒及高濃度晶界特征以及由此而產(chǎn)生的小尺寸量子效應(yīng)和晶界效應(yīng),使其表現(xiàn)出一系列與普通多晶體和非晶態(tài)固體有本質(zhì)差別的力學(xué)、磁、光、電、聲等性能[2],使得對(duì)納米材料的制備、結(jié)構(gòu)、性能及其應(yīng)用研究成為90年代材料科學(xué)研究的熱點(diǎn)。為使這種新型材料既有利于理論研究,又能在實(shí)際中拓寬其使用范圍,探索高質(zhì)量的三維大尺寸納米晶體樣品的制備技術(shù)已成為納米材料研究的關(guān)鍵之一。本文綜述國(guó)內(nèi)外現(xiàn)有塊狀金屬納米材料的制備技術(shù)進(jìn)展,并提出今后可能成為塊狀金屬納米材料制備的潛在技術(shù)。

    1現(xiàn)有塊狀金屬納米材料的制備技術(shù)

    1.1惰性氣體凝聚原位加壓成形法

    該法首先由H.V.Gleiter教授提出[1],其裝置主要由蒸發(fā)源、液氮冷卻的納米微粉收集系統(tǒng)、刮落輸運(yùn)系統(tǒng)及原位加壓成形(燒結(jié))系統(tǒng)組成。其制備過程是:在高真空反應(yīng)室中惰性氣體保護(hù)下使金屬受熱升華并在液氮冷鏡壁上聚集、凝結(jié)為納米尺寸的超微粒子,刮板將收集器上的納米微粒刮落進(jìn)入漏斗并導(dǎo)入模具,在10-6Pa高真空下,加壓系統(tǒng)以1~5GPa的壓力使納米粉原位加壓(燒結(jié))成塊。采用該法已成功地制得Pd、Cu、Fe、Ag、Mg、Sb、Ni3Al、NiAl、TiAl、Fe5Si95等合金的塊狀納米材料[3]。近年來,在該裝置基礎(chǔ)之上,通過改進(jìn)使金屬升華的熱源及方式(如采用感應(yīng)加熱、等離子體法、電子束加熱法、激光熱解法、磁濺射等)以及改良其它裝備,可以獲得克級(jí)到幾十克級(jí)的納米晶體樣品。納米超飽和合金、納米復(fù)合材料等也正在利用此法研究之中。目前該法正向多組分、計(jì)量控制、多副模具、超高壓力方向發(fā)展。

    該法的特點(diǎn)是適用范圍廣,微粉表面潔凈,有助于納米材料的理論研究。但工藝設(shè)備復(fù)雜,產(chǎn)量極低,很難滿足性能研究及應(yīng)用的要求,特別是用這種方法制備的納米晶體樣品存在大量的微孔隙,致密樣品密度僅能達(dá)金屬體積密度的75%~90%,這種微孔隙對(duì)納米材料的結(jié)構(gòu)性能研究及某些性能的提高十分不利。近年來,盡管發(fā)展了一些新的納米粉制備方法如電化學(xué)沉積[4]、電火花侵蝕(sparkerosion)[5]等方法,但與這些方法相銜接的納米粉的分散、表面處理及成型方法尚未得到發(fā)展。

    1.2機(jī)械合金研磨(MA)結(jié)合加壓成塊法

    MA法是美國(guó)INCO公司于60年代末發(fā)展起來的技術(shù)。它是一種用來制備具有可控微結(jié)構(gòu)的金屬基或陶瓷基復(fù)合粉末的高能球磨技術(shù):在干燥的球型裝料機(jī)內(nèi),在高真空Ar2氣保護(hù)下,通過機(jī)械研磨過程中高速運(yùn)行的硬質(zhì)鋼球與研磨體之間相互碰撞,對(duì)粉末粒子反復(fù)進(jìn)行熔結(jié)、斷裂、再熔結(jié)的過程使晶粒不斷細(xì)化,達(dá)到納米尺寸[6]。然后、納米粉再采用熱擠壓、熱等靜壓等技術(shù)[7]加壓制得塊狀納米材料。研究表明,非晶、準(zhǔn)晶、納米晶、超導(dǎo)材料、稀土永磁合金、超塑性合金、金屬間化合物、輕金屬高比強(qiáng)合金均可通過這一方法合成。

    該法合金基體成分不受限制、成本低、產(chǎn)量大、工藝簡(jiǎn)單,特別是在難熔金屬的合金化、非平衡相的生成及開發(fā)特殊使用合金等方面顯示出較強(qiáng)的活力,該法在國(guó)外已進(jìn)入實(shí)用化階段。如美國(guó)INCO公司使用的球磨機(jī)直徑為2m,長(zhǎng)3m,每次可處理約1000kg粉體,這樣的球磨機(jī)1993年在美國(guó)安裝有七座,英國(guó)安裝有二座,大多用來加工薄板、厚板、棒材、管材及其它型材。近年來,該法在我國(guó)也獲得了廣泛的重視。其存在的問題是研磨過程中易產(chǎn)生雜質(zhì)、污染、氧化及應(yīng)力,很難得到潔凈的納米晶體界面,對(duì)一些基礎(chǔ)性的研究工作不利。

    1.3非晶晶化法

    該法是近年來發(fā)展極為迅速的一種新工藝,它是通過控制非晶態(tài)固體的晶化動(dòng)力學(xué)過程使晶化的產(chǎn)物為納米尺寸的晶粒。它通常由非晶態(tài)固體的獲得和晶化兩個(gè)過程組成。非晶態(tài)固體可通過熔體激冷、高速直流濺射、等離子流霧化、固態(tài)反應(yīng)法等技術(shù)制備,最常用的是單輥或雙輥旋淬法。由于以上方法只能獲得非晶粉末、絲及條帶等低維材料,因而還需采用熱模壓實(shí)、熱擠壓或高溫高壓燒結(jié)等方法合成塊狀樣品[8]。晶化通常采用等溫退火方法,近年來還發(fā)展了分級(jí)退火[9]、脈沖退火[10]、激波誘導(dǎo)[11]等方法。目前,利用該法已制備出Ni、Fe、Co、Pd基等多種合金系列的納米晶體,也可制備出金屬間化合物和單質(zhì)半導(dǎo)體納米晶體,并已發(fā)展到實(shí)用階段。此法在納米軟磁材料的制備方面應(yīng)用最為廣泛。值得指出的是,國(guó)外近年來十分重視塊體非晶的制備研究工作,繼W.Klement、H.S.Chen、H.W.Kui等采用真空吸鑄法及合金射流法制備出Mg-La-TM、La-Al-TM、Zr-Al-TM系非晶塊體之后,近幾年日本以Inoue為代表的研究小組在非晶三原則指導(dǎo)下,又成功地采用合金射流成形及深過冷與合金射流成形相結(jié)合的方法制備了厚度分別為2mm、3mm、12mm、15mm、40mm、72mm的Fe-(Al,Ga)-(P,C,B,Si,Ge)[12]、(Fe,Co,Ni)70Zr8B20Nb2[13]、(Nd,Pr)-Fe-(Al,Ga)[14]、Zr-Al-Cu-Ni[15]、Pd-Cu-Si-B[16]系的非晶塊體。我國(guó)北京科技大學(xué)的何國(guó)、陳國(guó)良最近也采用合金射流成形法獲得8mmZr65Al7.5Cu17.5Ni10[17]的非晶塊體,這些研究結(jié)果為該法制備及應(yīng)用塊體納米材料注入了極大生機(jī)。

    該法的特點(diǎn)是成本低,產(chǎn)量大,界面清潔致密,樣品中無微孔隙,晶粒度變化易控制,并有助于研究納米晶的形成機(jī)理及用來檢驗(yàn)經(jīng)典的形核長(zhǎng)大理論在快速凝固條件下應(yīng)用的可能性。其局限性在于依賴于非晶態(tài)固體的獲得,只適用于非晶形成能力較強(qiáng)的合金系。

    1.4高壓、高溫固相淬火法

    該法是將真空電弧爐熔煉的樣品置入高壓腔體內(nèi),加壓至數(shù)GPa后升溫,通過高壓抑制原子的長(zhǎng)程擴(kuò)散及晶體的生長(zhǎng)速率,從而實(shí)現(xiàn)晶粒的納米化,然后再?gòu)母邷叵鹿滔啻慊鹨员A舾邷亍⒏邏航M織。胡壯麒等利用此法已獲得4×3(mm)的Cu60Ti40及3×3(mm)的Pd78Cu6Si16晶粒尺寸為10~20(nm)的納米晶樣品[18,19]。該法的特點(diǎn)是工藝簡(jiǎn)便,界面清潔,能直接制備大塊致密的納米晶。其局限性在于需很高的壓力,大塊尺寸獲得困難,另外在其它合金系中尚無應(yīng)用研究的報(bào)道。

    1.5大塑性變形與其它方法復(fù)合的細(xì)化晶粒法

    1.5.1大塑性變形方法

    在采用大塑性變形方法制備塊狀金屬納米材料方面,俄羅斯科學(xué)院R.Z.Valiev領(lǐng)導(dǎo)的研究小組開展了卓有成效的研究工作,早在90年代初,他們就發(fā)現(xiàn)采用純剪切大變形方法可獲得亞微米級(jí)晶粒尺寸的純銅組織[20],近年來他們?cè)诎l(fā)展多種塑性變形方法的基礎(chǔ)上,又成功地制備了晶粒尺寸為20~200(nm)的純Fe、Fe-1.2%C鋼、Fe-C-Mn-Si-V低合金鋼、Al-Cu-Zr、Al-Mg-Li-Zr、Mg-Mn-Ce、Ni3Al金屬間化合物、Ti-Al-Mo-Si[21-23]等合金的塊體納米材料。

    1.5.2塑性變形加循環(huán)相變方法

    1996年我國(guó)趙明、張秋華等[24]將碳管爐中氬氣保護(hù)下熔煉的Zn78Al22超塑性合金,經(jīng)固溶處理后通過小塑性變形和循環(huán)相變(共析轉(zhuǎn)變),獲得了晶粒尺寸為100~300(nm)的塊狀納米晶體。

    該方法與其他方法相比具有適用范圍寬,可制造大體積試樣,試樣無殘留縮松(孔),可方便地利用掃描電鏡詳細(xì)研究其組織結(jié)構(gòu)及晶粒中的非平衡邊界層結(jié)構(gòu),特別有利于研究其組織與性能的關(guān)系等特點(diǎn)并可采用多種變形方法制備界面清潔的納米材料,是今后制備塊體金屬納米材料很有潛力的一種方法。如將此法與粉末冶金及深過冷等技術(shù)相結(jié)合,則可望利用此法制備金屬陶瓷納米復(fù)合材料[21],并拓寬其所能制備的合金成份范圍。

    除以上主要方法外,近年來還發(fā)展的有噴霧沉積法、離子注入法等塊體金屬納米材料制備技術(shù),在此不再一一贅述。

    主站蜘蛛池模板: 精品91一区二区三区| 国产一区二区三精品久久久无广告| 欲色影视天天一区二区三区色香欲 | 色欲综合一区二区三区| www一区二区三区| 亚洲国产av一区二区三区| 清纯唯美经典一区二区| 久久精品国产免费一区| 亚洲蜜芽在线精品一区| 日韩高清一区二区| 好爽毛片一区二区三区四| 亚洲天堂一区二区三区| 日本一区二区三区精品视频| 一本大道东京热无码一区 | 亚洲av成人一区二区三区| 国产午夜一区二区在线观看| 亚洲一区二区三区不卡在线播放| 日韩精品无码一区二区三区| 欧洲无码一区二区三区在线观看| 波多野结衣电影区一区二区三区 | 日美欧韩一区二去三区| 久久久无码精品国产一区| 日韩一区二区在线观看视频 | 中文无码一区二区不卡αv| 无码人妻一区二区三区免费n鬼沢 无码人妻一区二区三区免费看 | 亚洲AV无码一区二区三区鸳鸯影院 | 八戒久久精品一区二区三区| 精品少妇人妻AV一区二区| 亚洲福利电影一区二区?| 亚洲AV无码第一区二区三区| 久草新视频一区二区三区| 亚洲视频在线一区| 精品一区二区三区自拍图片区| 久久国产精品一区| 国产亚洲综合一区二区三区 | 亚洲AV无码一区二区三区电影| 精品视频无码一区二区三区| 免费无码一区二区三区蜜桃大| 国产一区精品视频| 国产区精品一区二区不卡中文| 日本在线电影一区二区三区|