前言:我們精心挑選了數篇優質工程估價論文文章,供您閱讀參考。期待這些文章能為您帶來啟發,助您在寫作的道路上更上一層樓。
關鍵詞:公路工程;造價;估算;模糊
神經網絡對于公路工程建設企業來說,工程估價的準確性與合理性,直接決定著項目投資決策的正確性,是分析工程項目可行性的主要環節,同時也是公路工程項目標底編制的主要控制標準,因此工程造價估算的準確性,是各建設單位研究的重點內容,其對加強公路工程項目成本管理,有著積極的作用。
1公路工程造價估算的必要性
公路工程管理工作中,造價管理是主要內容,此項工作直接影響著建設企業的效益與工程的質量,歷來都是管理的核心部分。工程造價估算是項目前期管理的重要內容,是實現項目成本控制目標的基礎。造價估算能夠為項目施工方提供成本控制方案編制的依據。在設計招標前,明確工程預計造價,能夠避免招標環節惡意行為的發生。
2模糊神經網絡應用流程優勢
2.1模糊神經網絡應用流程。近年來,公路工程造價估算工作中,多采取模糊神經網絡來進行估算。公路工程造價估算,多是通過輸入公路工程相關要求與特點,最后輸出估算結果,這與模糊神經網絡應用原理極為相似,其具體流程如下。(1)構建信息庫基于已有工程信息,包括工程特征因素與工程造價等材料,構建造價信息庫。(2)取值結合公路工程施工要求,明確各類特征因素,包括評價指標,確定數據取值。(3)選取輸入與輸出向量基于模糊神經思想法,在造價信息庫內,至少選擇3個已完成施工的項目,作為基礎數據,以供神經網絡學習與訓練。輸入向量選擇為各類特征因素值,輸出向量為造價估算值。(4)迭達運算基于系統內的造價數據來編制算法程序,以供神經網絡學習,設計學習率,通過多次迭達運算,保障造價估算的準確性。2.2模糊神經網絡的應用優勢。公路工程造價估算中,采取模糊神經網絡法,具有以下優點。(1)造價模型化利用模糊數學,可以高效處理模糊信息。采取對比已建設和新建的公路工程,進行定量化描述,使得相關問題可以模型化。(2)結果更為科學開展公路工程造價估算,應用模糊神經網絡,再通過構建數學模型,進行數學計算分析,能夠減少人為計算的誤差,計算結果的準確性與科學性較高。(3)適應性強公路工程造價具有動態變化特性,模糊神經網絡模型能夠很好地適應此特性。此估算方法的應用,主要是依靠計算機,不僅運算速度快,而且運算精度較高。
3模糊神經網絡在公路工程造價估算中的應用
模糊神經網絡估算方法較多,文中選擇BP神經網絡法,是基于仿人腦的神經系統結構,具有較強的學習能力,為非線性自適應動態系統[1]。現對其在公路工程造價估算中的應用,做以下的分析。3.1公路工程樣本描述與定量。公路工程構件主要包括底層、基層、面層等,工程造價是由各構件類型與價格等因素決定,實物工程量取決于工程結構設計參數。已建工程造價變動,主要是受到構件因素的影響,被稱作是工程特征。基于工程特性,將公路工程劃分為不同類別,若按照路面形式劃分,主要包括瀝青路面和水泥路面等,為特征類目。對于工程定量化,是按照特征類目,依據定額水平與工程特征,填入相關數據,如表1所示。由表1能夠看出,每個公路工程模式均可以利用表格的形式來定量化描述,一個特征可以由多個類目組成,按照比例來計算量化結果。3.2BP神經網絡學習算法。在BP神經網絡中,需要將信息傳遞到網絡隱節點上,使用S型激活函數,把信息傳出,接著發揮激活函數的作用,成功輸出結果。在網絡隱節點以及輸出節點位置處,選擇S型激活函數,即f(x)=11+ex,若此結果未能按照正常程序開展,此時要轉變成反向傳播。假設存在N個樣本,定義描述為(Xk,yk)(k=1,2,⋯,N),其中某個輸入值為Xk,對應的神經網絡輸出值是yk,而隱層節點I的輸出值是Oj[2]。3.3工程造價估算模型。基于BP神經網絡,構建公路工程造價快速估算模型。針對以往工程案例,開展估算研究,將工程特征定量化數值,設為Xij(i=1,2,3,⋯,n;j=1,2,3,⋯,n),將相應的工程造價定額預算相關資料,設為yis(i=1,2,3,⋯,n;s=1,2,3...n),不考慮市場價格調整。明確BP神經網絡結構系統參數,包括輸入層節點數m、輸出層節點數n、隱層節點數L。以Xij為輸入,以yis為輸出,開始神經網絡訓練,獲得新建工程的造價估算神經網絡,反向估算新建工程造價[3]。3.4計算實例。以某省道一級公路和二級公路工程為例,其中一級公路使用的是瀝青混凝土路面,記為T19;二級公路使用的是水泥混凝土路面,記為T20,檢驗18個樣本工程造價數據,基于檢驗結果能夠了解,T19造價指數是0.98,T20造價指數為0.96,獲得預算資料如下:T19路面類型是半柔性路面;基層為水泥穩定碎石;底層材料為石灰土;路面結構為瀝青混凝土;面層厚度為15cm;基層厚度為14cm;底層厚度為10cm;T20路面類型是剛性路面;基層為工業廢渣穩定土;底層材料為石灰土;路面結構為水泥混凝土;面層厚度為12cm;基層厚度為16cm;底層厚度為12cm。將獲得的預算材料和表1資料進行對比分析,能夠明確T19工程特征定量化描述是T19=(3,1,2,2,2,6,2.5),T20工程特征定量化描述是T20=(5,4,7,3,4,3,4.1),將T19與T20,輸入到經過訓練的BP神經網絡中,獲得的結果為T19=(0.4029,0.4056,0.5005,0.4365),T20=(0.6277,0.6156,0.4290,0.5661),經過反算,獲得工程造價資料預測值,其中V19=(481.74,16.44,0.0046,145.85),V20=(1185.82,37.16,0.0033,247.07),預測的相對誤差O19=(1.61%,4.65%,4.15%,1.40%),O20=(3.76%,3.67%,5.70%,1.84%),由此能夠看出,基于BP神經網絡預測的工程造價估算精度較高[4]。
4結語
模糊神經網絡的應用,主要是基于模糊數學與神經網絡理論,借助類似工程之間存在的相似性,采用BP神經網絡法進行公路工程造價估算,能夠快速獲得估算結果,具有較強的應用優勢。
作者:錢強 單位:中建路橋集團有限公司
參考文獻:
[1]王運琢.基于BP神經網絡的高速公路工程造價估算模型研究[J].石家莊鐵道大學學報(自然科學版),2011,24(2):61-64.
[2]劉湘雄.人工神經網絡在工程造價估算中的應用[J].建筑,2012(12):68-69.
關鍵詞:基礎加固;頂升糾編;沉降觀測;驗算
1工程概況
邵陽市某工程是一座六層的框架結構建筑,基礎采用340mm鍾擊沉管灌注樁,設計單樁承載力250kN,工程施工到封頂后突然發生較大沉降及傾斜,3d時間西北角向西傾斜達41.60cm,停工后制定了處理措施并完成后續工程。
2建筑物基礎加固方法及施工要點
2.1樓房下沉傾斜的原因分析
2.1.1工程樁成樁質量差,承載力不能滿足結構荷載要求。場區土層地質資料不準確也是樁承載力低的原因。
2.1.2工程樁上的第一級承臺混凝土離析嚴重,承臺斷裂破壞,甚至已反轉破壞。
2.2基礎加固的靜力壓樁方法
基礎加固采用靜力壓預制樁方法,預制樁是由反力架和油壓千斤頂所組成的壓樁機壓入的,千斤頂所需反力是通過反力架由樓房自重提供的。預制樁采用30×30cm的方樁,制樁壓入的終止條件為壓入荷載大于或等于600kN。
為避免施工引起新的附加沉降,靜力壓樁施工前先對所有已破壞的承臺采用工字鋼進行支撐。
2.3靜力壓樁的質量檢查
根據現場預制樁時取樣的試件試驗,預制樁的混凝土抗壓強度達到設計要求;預制樁施工完成后對3根樁作靜力載荷試驗,預制樁的極限荷載均大于600kN。
2.4條形基礎承臺的設計及施工
基礎承臺的設計是由現場實際情況而定的。受首層的凈空不能減小的限制,采用薄承臺結構。同時為增加整體作用能力,將西面1#~8#及東面9#~16#柱分別做成條形基礎承臺。承臺的設計荷載主要考慮以下幾個方面:
2.4.1柱的設計荷載,東面9#~16#柱荷載1500kN;西面1#~8#柱荷載1900kN。
2.4.2原有承臺、柱的現在荷載按800kN考慮,但由于在現有荷載800kN作用下,沉降并未完全穩定,當基礎加固后原有承臺的荷載將轉移給新加固的樁。從安全考慮,將原有承臺承擔的800kN荷載的30%轉移給新加固的樁平均分配。
2.4.3根據上面1、2兩個條件則可計算出承臺設計計算時新加固樁的荷載為西面1#~8#承臺的樁設計荷載P=335kN,東面9#~16#承臺的樁設計荷載P=313kN。
新設計的條形基礎承臺是在原有承臺的上面,破環反轉的承臺必須將其鑿平至新加固的承臺底標高,由于原有承臺還承擔著樓房的現有荷載,為減小施工對樓房沉降的影響,采取了有效的加強支撐的措施,施工中盡量減少震動,并密切監測大樓沉降的動態。根據施工期間的沉降觀測結果,在靜大壓樁及承臺的施工期間,各柱的沉降速率與施工前增加很小,說明采用的施工方法是切實可行的,對大樓的沉降影響較小。在承臺澆注混凝土3~5d后承臺已停止下沉,說明新的承臺已發揮作用。
3基礎加固后傾斜樓房的頂升糾偏處理措施
3.1頂升糾偏的設備及施工安裝
頂升糾偏的設備主要有,鋼支承梁和混凝土支承墩及頂升用的油壓千斤頂等。施工安裝時每根柱要裝兩條鋼支承梁,支承梁與柱接觸面用水泥砂漿充填,保證緊密接觸,用穿過柱子的高強螺栓的拉力使柱與支承梁緊密連接在一起,鋼支承梁的兩端支承于兩邊的混凝土墩上。然后等待水泥砂漿有足夠的強度后,將柱子鑿斷安裝千斤頂。頂升糾偏前割斷柱的鋼筋,則整個頂升糾偏的設備安裝完成。
3.2頂升糾偏方法
頂升時分級同步進行,在柱的支承梁未離開支承點時,頂升加載采用壓力控制,共分4級進行,每個千斤頂都基本上以同步壓力上升,每級加20t施加。在柱的支承梁離開支承點后即按上升高度控制。每根柱的上升在同一級基本上同步進行,每一級頂升完畢后均作詳細的觀測。為了保證樓房頂升糾偏后東、西方向的傾斜值不超過40mm這一標準,西邊各柱的頂升量的大小是采用實測的二、四、六層樓面相對于同一基點柱(16#柱)沉降差的平均值作為頂升的依據,同時也考慮西邊樁頂升時相鄰柱不應有超過結構容許沉降差這一條件。
3.3現場觀測及觀測結果分析
3.3.11#~8#柱頂升出力和頂升量的測定
1#~8#柱在頂升糾偏時各柱的上升高度與千斤頂頂出力的關系曲線如圖1所示,千斤頂出力隨上升高度變化無一定規律,主要是受相鄰千斤頂在不是完全同步上升情況下,上升得快的千斤頂的出力將增大,反之則出力小,因此出現千斤頂出力變化比較大的情況。為了有利于原有裂縫的閉合,適當調整了個別柱的頂升量。
3.3.29#~16#柱承臺的轉動量觀測
在9#~16#柱每柱靠近承臺面(離承臺面約20cm)柱的內、外側各裝一個百分表觀測承臺在西邊柱頂升時每級的變形值,根據兩個表的差值除以兩個表的距離即可求出承臺的轉角。9#~16#柱的承臺的轉角θ0與相對應的1#~8#柱的頂升高度W關系曲線如圖2所示。從圖2可看出θ0~W基本成線性關系,9、10柱的承臺的轉角θ0要比其它柱的基礎承臺基礎剛度大。
3.3.3梁的裂度觀測及觀察
梁的裂度觀測選擇了2~10、7~15柱的一樓連接大梁。在靠近10#、15#柱的大梁梁底分別安裝千分表,測量頂升過程中的應變變化情況。測量結果如圖3(為拉應變),從圖中可看出,梁底應變與頂升高度的關系,2~10梁應變與頂升高度和變化比較有規律。而7~17梁的梁底的~W變化規律性差。主要原因是由于7#柱頂升時支承梁底打入鐵墊塊時敲擊震動影響。而2~10梁以上的所有隔墻未拆除,可削弱由于2#柱頂升時支承梁底打入鐵墊塊時敲擊震動影響,其觀測結果比較可靠。根據現場觀察7~15梁,并未產生裂紋,所以7~15梁的應變觀測結果受震動影響大,未能真實反映梁底的應變變化情況。同時在頂升過程中派專人觀測梁的動態,觀察結果是所有東西方向的大梁在頂升過程中均未產生裂紋,而且西邊橫梁的原有裂縫在頂升糾偏后都有閉合的跡象。只是在西邊頂升高度達到10~11cm后9#、10#、11#柱的內側開始產生裂紋。頂升糾偏終止后,最大的裂縫寬度發展至約0.5mm。產生裂縫的主要原因是頂升產生的附加彎矩作用拉裂的,而9#、10#梯形的加固后的承臺剛度大,因此其相應的附加彎矩也較大。由于裂縫較小并不影響其支承強度,而且在長期荷載作用下通過應力調整裂縫將逐漸閉合。
3.3.4頂升糾偏的回復量觀測及9#~16#柱的沉降觀測
在樓房的四個角觀測頂升后的糾偏量,圖4所示曲線是東北角樓頂在頂升過程中的水平移動量與1#柱的頂升高度的關系。W~u關系近似為線性關系。
從表可以看出已施工加固承臺的9#、10#柱的沉降要比其它未施工加固承臺的柱要小。
3.3.5頂升糾偏的終止和柱的復原
按上述頂升糾偏方法進行頂升至第24級時,東北角用經緯儀觀測基本達到垂直狀態,從其它三個角的樓頂吊垂線至地面的目測結果也是大致垂直狀態。終止頂升糾偏。
頂升糾偏結束后立即施工11#~16#柱加固的基礎承臺,對柱進行基礎加固及糾偏工程已圓滿結束。
4頂升糾偏過程中的結構內力分析及樓房最終沉降計算
4.1頂升糾偏過程的結構的內力分析
一棟已完工的混凝土框架樓房,盡管采用截柱頂升糾偏方法糾正樓房的傾斜,但仍然對框架各節點產生一定的附加彎矩,這種附加彎矩之后會對框架結構造成損害,必須預先考慮,現對其作些分析計算。由于二樓至六樓所有樓板及梁組成了剛度較大的多層單跨梁體系。可以將樓房取圖5的簡圖來分析計算。A點為用千斤頂支承,在垂直方向有水平方向可自由的支點,N為結構自重,L為頂升糾偏時附加上千力。F點為固定端但在偏心荷載作用下仍能作相應轉動(θ0)的。BCDE由梁、板組成剛度遠大于EF的一樓柱的剛度,因此現假定BCDE為近似剛架。則當在A點頂起時產生一附加上升力N,在EF段則受一彎矩M作用(圖6為彎矩圖)。則E點的轉角可用懸臂梁受純彎的公式求得:
θE=ML/EI+θ0
A點頂起高度為Wcm時樓房所產生的轉動θ=W/970,現考慮θ=θE則BCDE部分由于樓房轉動將不受影響,因此可得出頂升高度W與彎矩M及F點承臺的轉動θ0關系:
W/970=ML/EI+θ0
M=EI/L(W/970-θ0)
在已知1#~8#柱每級的頂升W和實測的相應9#~16#柱的承臺轉角θ0的情況下,即可求出相應的9#~16#柱一樓部分柱段所受的彎矩M。考慮到彎矩M在大于鋼筋混凝土柱的抗裂強度后,由于柱產生了裂紋,則EI將減小的影響,求出的彎矩M與頂升高度W的關系曲線。根據柱的尺寸為40×60cm及配筋為8Φ22即可計算出抗彎能力為25.4Mpa;當頂升高度大于100mm后9#、10#柱開始發現有幾條小的裂縫,隨著頂升高度的增加,裂縫寬度也有所發展。這與計算分析是較一致的。梁的裂度觀測及觀察也表明,在西邊術頂升開始至頂升結束,所有大梁及樓板均未產生新的裂縫。這也說明整個樓房的偏轉完全靠西邊各柱頂升后在東邊的柱受彎矩產生了轉動和承臺轉動提供偏轉的,所以對梁及樓板無甚影響。
4.2樓房最終沉降計算
基礎加固后,從建筑物的觀測結果,在目前現有荷載80~1200kn作用下沉降已趨于零。以后樓修復后每個承臺將受設計荷載作用。現取東面9#~16#柱的承臺的設計荷載為1500kn,西面1#~8#柱的承臺的設計荷載為1900kn,現有荷載按800kn計算,并假定承臺新增加的荷載P全部由新的加固樁承擔,則承臺的沉降S為:
S=P/nk
西邊1#~8#柱承臺加樁為每個承臺4根樁P=190-80=110噸,樁的剛度系數K由靜力壓樁時的樁的靜載試驗的P~S曲線可計算出:K=3636/m。則可計算出西邊3#~8#承臺可能產生的沉降約7.6mm。1#、2#承臺以后增加的荷載很小則沉降將較小約5mm。東邊9#~16#柱的承臺每個按加3根樁考慮。P=150-80=70噸,由上述公式可計算出11#~16#承臺可能產生的沉降約6.4mm。同樣9#、10#承臺以后增加荷載很小其沉降將較小。
考慮到樁在長期荷載作用下,其沉降將略有增加,本樓房在基礎加固后至樓房修復竣工后的最終沉降將在10~15mm左右。
5結論及建議
5.1本工程基礎加固采用靜力壓樁方法,共壓入30×30cm預制樁61根,由于靜力壓樁方法最終的壓入荷載大于等于60t,其承載力是很清楚的。同時根據抽查的7根靜載試驗結果,7根試驗樁的容許承載力均可達到40t。因此在基礎加固后完全可以滿足設計荷載要求。
5.2采用了條形基礎承臺增加了整體作用能力,承臺施工質量均滿足設計要求。
5.3在西邊1#~8#柱安裝千斤頂進行頂升糾偏,使大樓東西方向糾偏后達到垂直狀態,頂升糾偏過程中,大樓原有結構完好,只是在9#、10#、11#柱在一樓的柱的內側產生裂縫,裂縫寬度小,已作修補處理。樓房的糾偏達到了預期的目的。
5.4根據沉降分析結果,大樓在加固后至修復竣工后在新的荷載作用下將產生10~15mm左右的沉降。
5.5建議以后大樓的修復采用輕型材料或減小內部隔墻的厚度,減輕大樓的自重,可以增加大樓的安全度。
參考文獻:
[1]趙國藩.鋼筋混凝土結構的裂縫控制等.海洋出版社,1991.
[2]王濟川,卜良桃編著.建筑工程結構鑒定、改造與加固.湖南科學技術出版社,1999.
防滲墻一般要求墻體厚度小、滲透系數低、柔性強、耐久性好及單位面積造價低。防滲墻施工有多頭深層攪拌水泥土、鋸槽法、鏈斗法、薄型抓斗、射水法和倒掛井法等成墻工藝。
(一)多頭深層攪拌水泥土成墻工藝
多頭深層攪拌樁機一次多頭鉆進,把水泥漿噴入土體并攪拌,使土體與水泥漿液混合固結成一組水泥土樁,樁與樁搭接形成水泥土防滲墻,目前最大成墻深度為22m,水泥土滲透系數<10cm/s,抗壓強度>0.3MPa。其優點是施工簡便、無泥漿污染、造價較低,適用于粘土、砂土、淤泥和砂礫層(砂礫直徑小于5cm)。實踐證明,多頭深層攪拌水泥土防滲墻防滲效果明顯,在地下防滲工程中質量可靠,投資最經濟、最有效,具有一定發展前景。
(二)鋸槽法成墻工藝
在先導孔中,鋸槽機的刀桿以一定的傾角一邊作上下往復切割運動,一邊以0.8-1.5m/h的速度(根據地層狀況)向前移動開槽;被鋸切割下來的土體可由反循環或正循環方式的排渣系統排出槽外,并采用泥漿護壁。澆筑塑性混凝土,形成寬度為0.2-0.3m的防滲墻體。鋸槽機由行走底盤、動力及傳動系統、刀桿及支架加壓系統、排渣系統、起重設施及電氣控制系統組成;傳動方式有機械式與液壓式2種。以不同規格的刀桿進行組合,開槽寬度可達0.2-0.5m、深度達到40m。鋸槽法的優點是連續成槽、工效高、墻體連續、質量好,并且成墻深,適應于粘土、砂土和卵石粒徑小于100mm的砂礫石地層;還可以采用自凝灰漿、固化灰漿形成不同強度和抗滲指標的防滲墻。
(三)鏈斗法成墻工藝
由鏈斗式開槽機排樁上的旋轉鏈斗取土,同時將斜放的排樁下放到成墻深度,開槽機前進開挖溝槽,并采用泥漿護壁,其澆筑混凝土方法類似鋸槽法。鏈斗式開槽機的開槽寬度為16-50cm,深度可達10-15m。適應于粘土、砂土和粒徑小于槽厚的、含量小于30%的砂礫石地層。
(四)薄型抓斗成墻工藝
采用斗寬為0.3m的薄型抓斗挖土開槽,泥漿護壁,澆筑塑性混凝土或用自凝灰漿形成薄壁防滲墻,最大成墻深度可達40m。適用于粘土、砂土及卵石和砂礫的含量與粒徑在一定范圍內的土層。
(五)射水法成墻工藝
射水法成墻設備主要由造孔機、混凝土攪拌機和澆筑機組成。利用造孔機成型器內的噴嘴,射出高速水流來切割土層,成型器上下運動切割修整孔壁,采用泥漿護壁,正循環或反循環出渣。槽孔形成后,澆筑水下混凝土或塑性混凝土,形成薄壁防滲墻。成墻厚度為0.22-0.45m,深度可達30m.成墻垂直精度可達1/300,適應于粘土、砂土和粒徑小于100mm的砂礫石地層。在1998年歷史罕見的特大洪水過后,在長江、贛江、鄱陽湖等國內重要堤防加固工程中,射水法得到廣泛采用,取得了較好的社會經濟效益。二、灌漿類型及其特點
土石壩壩體、壩基防滲處理中灌漿方法主要有均質土壩及寬心墻壩的壩體劈裂灌漿、高壓噴射灌漿、壩基卵礫石層防滲帷幕灌漿等。
(一)土壩壩體劈裂灌漿
土壩壩體劈裂式灌漿是運用壩體應力分布規律,用一定的灌漿壓力,將壩體沿壩軸線方向劈裂,同時灌注合適的泥漿,形成鉛直連續的防滲泥墻,從而堵塞漏洞、裂縫或切斷軟弱層,提高壩體的防滲能力,并通過漿、壩互壓和濕陷,使壩體內部應力重分布,提高壩體變形穩定性。針對裂縫的局部灌漿,在可能有裂縫的區域,均勻布置類似固結灌漿的灌漿孔群;對壩體施工質量差,甚至出現上下游貫通的橫縫,一般應做全線的劈裂灌漿。我國廣東省寶樹水庫用土壩壩體劈裂灌漿技術來解決土壩壩體的滲漏問題,結果表明灌漿后壩體密實度得到提高,滲透系數降低,背水坡濕潤滲水現象消失,壩體滲流量減少70%以上。
(二)高壓噴射灌漿
高壓噴射灌漿防滲是借助于高壓水泥漿液射流沖擊破壞被灌地層結構,使水泥漿液與被灌地層土顆粒摻混,形成壁狀固結體而起防滲作用。根據被灌地層結構和防滲要求不同,又分為定噴、擺噴和旋噴。高壓噴射灌漿防滲處理的優點是:設備簡單、工效高、料源廣、造價低,搭接防滲的效果好。缺點是:機具較多、對地質條件的要求較高,控制不好易在較大(>200mm)顆粒背后形成漏噴現象。
(三)卵礫石層防滲帷幕灌漿
卵礫石層的防滲帷幕灌漿大都采用粘土為主加少量水泥的混合漿液進行灌注,不同于在巖石中灌漿。卵礫石層灌漿難以形成自立的鉆孔,故常采用套閥式灌漿、循環鉆灌閥跟管灌漿、打管灌漿的方法。因受地質條件的限制,不能有效控制漿液的填充范圍,為達到相對較高的防滲標準,常需采用3排以上的灌漿孔。隨著防滲墻技術的日益成熟,目前較少采用該方法,僅用于當灌漿作為補充勘探的手段,同時兼顧防滲處理,可以更加準確地針對發生集中滲漏的地點,通過少量的灌漿使問題得到解決的情況下。
(四)控制性灌漿
控制性灌漿是近年來提出的一種改進型灌漿工藝,是對傳統灌漿工藝的一種調整,通過控制漿液壓力和流量,在保證質量和效果的前提下,有效控制灌漿范圍,節約時間和投資。
三、結論
綜上所述,小型水利水電樞紐工程除險加固,多可以采用防滲、灌漿的方法得到有效處理。針對小型水利水電樞紐工程的不同特點,采取不同的方法。高壓噴射灌漿技術具有開挖量小、占地少、設備簡單、灌漿工效高、造價低、對臨近建筑物影響小的特點,應用較廣。