前言:我們精心挑選了數篇優質人工智能教育實踐文章,供您閱讀參考。期待這些文章能為您帶來啟發,助您在寫作的道路上更上一層樓。
新課改要求教學應當促進學生全面發展,其中,對創新思維和實踐能力的培養尤為重視。初中階段如何科學、有效地培養學生的創新思維與實踐能力是每一個教育者需要思考和研究的問題。
一、創新思維與實踐能力的培養
1.創新思維與實踐能力的重要性
每個人都擁有創造能力,這種能力是可以開發的,并對學生人生發展起重要作用,如何科學開發學生的創造能力,離不開對創新思維和實踐能力的培養。教師應該有意識的發現和訓練學生的創新思維,多鍛煉學生的動手能力,提高他們的實踐能力,為學生主動創造做準備。
2.培養創新思維與實踐能力的途徑
培養創新思維和實踐能力的途徑有很多,初中階段學校的數學課、自然科學課、社會實踐課、信息技術課等課程是培養學生創新思維和實踐能力的有效途徑。其中以人工智能教育為重點的信息技術課可以利用編程技術、信息化技術、大數據技術的學習,高效、系統地開發學生創新思維,科學地提升學生的實踐能力。
二、人工智能教育與信息技術課的融合
當前,人工智能技術發展得如火如荼,語音識別、機器翻譯、計算機交互、計算機視覺、機器閱讀識別等技術的突破,向我們展示了人工智能的優越性和未來前景,很多地區和學校也已將人工智能教育,如編程、信息處理,作為必修內容納入了學校的教學大綱之中。人工智能教育包含編程、大數據、機器人等多個技術領域的學習,中學階段可以利用信息技術課將人工智能教育的相關內容融入教學中,例如:Python編程、APP制作、機器人教育。
在初中信息技術教學中,應當向學生傳授編程的相關知識,讓學生初步認識編程、了解編程常識,并引導學生利用計算機進行編寫代碼。利用現代教學思路和教學創新激發學生興趣,提高學生信息技術課學習效率和實踐能力。為學生打造智能化、個性化,富有創造性的學習體驗。
三、人工智能教育的實踐要求
在信息技術課程的教學過程中融入編程等人工智能知識,可以豐富教學內容,拓寬學生視野,增加學生知識儲備,同時也能有效激發學生興趣,滿足學生好奇心,轉化為實踐、創新的動力。但是在實施人工智能教育的過程中,需要注意以下幾個問題,以信息技術課中編程教學為例:
1. 要考慮學生的接受度,體現量力性教學原則,不超綱不越級。
2. 要注重環境的創設,打造輕松愉快的學習環境,充分調動學生熱情,幫助激發學生創新思維和實踐動機。
3. 要注重編程常識的普及和實踐引導,給學生充足的思維空間和操作機會。
4. 要注重教學的系統性和連貫性,加強編程技術同信息技術知識、其他人工智能技術的關聯,為學習的水平、順向遷移打好基礎。
只有明確教學目標,不斷地優化教學過程,監控各個環節,加強與學生溝通,積極開發和訓練學生的創新思維和實踐能力,才能將人工智能教育的效果最大化,從而不斷提高人工智能教育的教學質量。
四、人工智能教育存在的問題
自新課改提出了信息化教育后,我國不少地區已經開始探索人工智能教育問題,尤其在義務教育階段,開展了各種形式的人工智能教育,但是由于各地區經濟發展水平不同,教育基礎、教學水平和資源條件不同,正面臨著諸多問題。
目前在我國中學階段,人工智能教育發展水平整體較低,存在著地區不均衡、教育資源不均衡、教學水平不均衡、學生學習程度不均衡等多方面問題,需要人力物力財力的持續投入,優化人工智能教育平臺,完善人工智能教育基礎設施,讓人工智能教育更規范。同時,教育工作者也需要不斷研究、調整教學模式,更好地激發學生創新思維,提高實踐能力。
五、結語
本文通過中學生信息技術課和人工智能教育的結合,淺談人工智能教育與培養學生創新思維、實踐能力的關系。人工智能教育的實施有利于中學生開發創新思維,提升動手能力,可以和多學科聯動教學,加強學科間的聯系,促進學生全面發展。目前在我國中學階段,人工智能教育發展水平整體較低,存在著地區不均衡、教育資源不均衡、教學水平不均衡、學生學習程度不均衡等多方面問題,仍需教育工作者不斷研究改進,讓人工智能教育更規范,更好地激發學生創新思維及實踐能力。
參考文獻
[1]李宏堡,袁明遠,王海英.“人工智能+教育”的驅動力與新指南——UNESCO《教育中的人工智能》報告的解析與思考[J].遠程教育雜志,2019,37(04):3-12.
關鍵詞:人工智能;理論傳授;實驗訓練;科研訓練
人工智能(Artificial Intelligence,AI)是計算機科學與技術專業的一門重要專業課程,是一門研究運用計算機模擬和延伸人腦功能的綜合性學科。它研究如何用計算機模仿人腦所從事的推理、證明、識別、理解、設計、學習、思考、規劃以及問題求解等思維活動,并以此解決需要人類專家才能處理的復雜問題,例如咨詢、診斷、預測、規劃等決策性問題[1]。人工智能是一門涉及數學、計算機、控制論、信息學、心理學、哲學等學科的交叉和綜合學科。目前,人工智能很多研究領域,如自然語言處理、模式識別、機器學習、數據挖掘、智能檢索、機器人技術、智能計算等都走在了信息技術的前沿,有許多研究成果已經進入并影響了人們的生活。
2003年12月5日,國內第一個“智能科學與技術”本科專業在北京大學誕生[2],它標志著我國智能科學與技術本科教育的開始,對我國智能科學技術人才培養和智能科學與技術學科建設起到極大的帶動作用。目前,人工智能課程的教學存在幾個問題:首先,注重講授理論知識,實驗環節滯后,這不利于培養學生的實踐能力,更談不上實踐創新。其次,人工智能是交叉學科,內容比較繁雜,各種教材的內容不一樣,授課沒有統一的體系,學生學習時抓不住重點,不能理解人工智能的根本方法和思想。一般說來,計算機專業的其他課程,如網絡技術、數據庫技術、算法分析與設計等,都是求解結構化問題的基本技術,而人工智能技術則是解決非結構化、半結構化問題的有效技術。最后,人工智能科學與技術飛速發展,但目前人工智能只被視為一門專業課,課程講授和人工智能沒有作為一個研究方向結合起來,也沒有把傳授課本知識和引導啟發創新結合起來。
適應知識經濟發展的高等教育,要把培養創造精神和創新能力擺在突出的位置。創新是基礎研究的生命,而高等學校的教學只有與科研緊密結合,才能在培養學生的創新精神方面有所作為。為此,針對人工智能的課程特點,我們積極開展研究型教學、研究型學習,提高大學生的學習能力、實踐能力和創新能力的研究與實踐。在教材上,我們選用了清華大學出版社出版、馬少平等編寫的《人工智能》。我們的教學研究與實踐的主要內容包括三個方面:啟發式傳授人工智能解決問題的非結構化的思想;成體系的實驗訓練;以及與畢業論文,學校大學生科研項目資助計劃,國家大學生創新性實驗計劃相對接的科研訓練。這三個主要方面,層層遞進、環環相扣,是體系完整的創新型人工智能教學實踐。下面,我們就這三個方面內容展開探討。
1啟發式傳授人工智能解決問題的非結構化思想
現實世界的問題可以按照結構化程度劃分成三個層次[1]:1)結構化問題,能用形式化(或稱公式化)方法描述和求解的一類問題;2)非結構化問題,難以用確定的形式來描述,主要根據經驗來求解;3)半結構化問題,介于上述兩者之間。一般說來,計算機專業的其他課程如網絡技術、數據庫技術、算法分析與設計等,都是求解結構化問題的基本技術。而人工智能技術則是解決非結構化、半結構化問題的有效技術。人工智能的教學可以讓學生在體驗、認識人工智能知識與技術的過程中獲得對非結構化、半結構化問題的解決過程的了解,從而達到培養學生多角度思維的目的。
我們使用的教材主要內容包括搜索和高級搜素、謂詞邏輯和歸結原理、知識表示、不確定性推理方法、機器學習等。這些主要內容也可以相應地歸結為若干個典型算法,如啟發式A*搜索算法、 剪枝算法、元啟發式算法(模擬退火,遺傳算法)、謂詞邏輯歸結算法、貝葉斯網絡、決策樹、神經網絡(BP算法、自組織網絡和Hopfield神經網絡算法)。元啟發式算法是一種啟發式的隨機算法,是用來解決非結構化問題的典型算法,其思想和傳統的決定性算法如動態規劃、分支限界完全不一樣。學生在剛一接觸到這些元啟發式算法一時難以接受和理解其機理,對算法的有效性往往半信半疑。根據非結構化、半結構化問題的特點,講解和演示算法在解決此類問題的具體步驟和詳細過程,從而讓學生掌握人工智能算法的基本思想。在講解不同的元啟發式算法的時候,學生會問,是模擬退火算法強,還是遺傳算法強;在講到機器學習算法的時候,學生會問到底哪個分類算法最好,這時候我們可以把搜索(優化)領域和機器學習領域的“沒有免費午餐”定理進行適當的講解和解釋,從而把具體算法實現層面之上的一些人工智能的哲學思想進行傳授。
在人工智能的具體教學中,采用問題教學法和參與式教學法。在問題教學法中,圍繞人工智能的知識模塊,在引導學生發現各種各樣問題的前提下,傳授知識。教學活動中,嘗試使人工智能知識圍繞實際問題而展現,使問題不僅成為激發學生求知欲的前提,也成為學生期盼、理解和吸收知識的前提,以此激發學生的創造動機和創造性思維。在參與式教學中,打破人工智能算法的枯燥、沉悶的傳統教學法,嘗試開放式教學內容;提問式講課;無標準答案的課程設計;查找文獻,分組動手實現人工智能算法等參與式教學方法,培養和發揚學生的參與意識,通過參與式教學提高學生學習的主動性、積極性和效率,培養學生的動手能力和創新能力。
2成體系的實驗訓練
獨立開展人工智能實驗課程,開發一批新型、富有創意的實驗案例庫,搭建一個創新實驗和虛擬學習社區平臺。人工智能實驗課程的特點是應用各種人工智能方法,根據問題的約束、結構、信息進行表示建模和計算機上實現,是與人工智能原理同步的實驗課程。學生必須掌握的人工智能的基本原理和計算機操作技能,它對于學生的知識、能力和綜合素質的培養與提高起著至關重要的作用,在整個教學過程中占有非常重要的地位,是計算機軟件、計算機應用、計算機網絡、軟件工程等專業的一門重要的必修專業課程。通過實驗,學生得到嚴格的訓練,能規范地掌握人工智能的基本理論和主要方法、基本問題求解技術,熟悉各種計算環境的基本使用。
在培養學生掌握實驗的基本操作、基本技能和基本知識的同時,努力培養學生的創新意識與創新能力。為實現這一目標,在課程內容安排上采用適量基本原理與方法的實驗內容為基本內容,增加一系列綜合性實驗和開放性創新實驗問題,在實驗內容方面更注重研究性實驗中的創新問題。實驗內容方面分為三個層次:基本原理的基礎性實驗、綜合實驗和研究性實驗。在后兩個層次的實驗中,部分引入人工智能課程小組團隊的最新科研成果,目的在于通過完成這些研究性實驗,培養學生獨立解決實際問題的能力,以提升學生的科研素質與創新意識。我們將這些設計實驗稱為新型實驗案例庫,它被放在人工智能課程小組網站上,以此搭建一個創新實驗和虛擬學習社區平臺。通過實驗課程的學習和訓練,學生應達到下列要求。
1) 掌握人工智能方法的優點及其在實際中的應用。
2) 學會對人工智能問題進行分析建模和應用各種計算工具實現問題求解,熟悉對實驗現象的觀察和記錄,實驗數據的獲取與設計,最佳實驗條件的判斷和選擇,實驗結果的分析和討論等一套嚴謹的實驗方法。
3) 鞏固并加深對人工智能原理課程的基本原理和概念的理解,培養學生勤奮學習,求真求實的科學品德,培養學生的動手能力、觀察能力、查閱文獻能力、思維能力、想象能力、表達能力。
4) 通過完成綜合研究性實驗,培養學生獨立解決實際問題的能力,提高學生的科研素質與創新意識。
在培養學生掌握實驗的基本操作、基本技能和基本知識的同時,進一步培養學生分析問題和解決問題的能力,培養學生的創新意識、創新精神和創新能力,為學生今后從事科研、教學或企事業單位的分析檢驗以及新技術的研發工作打下扎實的基礎。
在實驗組織方面,根據各實驗的目的和要求,學生分為5人1組,指定一個組長,每組選擇1套實驗題目。基礎實驗題目要求達到27學時、綜合性實驗題目選擇1題和研究性實驗題目選擇1題,基礎實驗題目要求在規定時間內,小組獨立完成實驗測定、數據處理,并撰寫實驗報告。實驗過程中, 要求學生勤于動手, 敏銳觀察, 細心操作, 開動腦筋, 分析鉆研問題, 準確記錄原始數據, 經教師檢查,實驗及其原始數據記錄才有效。同時,團隊作業,需要多人分工合作、相互幫助,這樣可以提高人際交往和溝通能力,學會與他人合作,培養團隊創新能力。
3課程學習與畢業論文,科研訓練相結合
人工智能技術在一定程度上代表著信息技術的前沿和未來,通過學習和體驗人工智能的知識和技術,學生能夠在一定程度上了解信息技術發展的前沿知識,這有助學生開闊視野、培養興趣,為今后繼續深造或走向社會奠定堅實的基礎[3-4]。
人工智能的理論和方法廣泛應用于數據挖掘、機器學習、模式識別、圖像處理中,這些內容既是高年級的后續課程,又是現在熱門的研究方向。學習和深刻理解人工智能的理論、方法和應用,對后續課程學習以及今后的研究具有重要的意義。
我院規定大學三年級的學生開始聯系畢業論文指導導師,同時確定畢業論文的研究方向,提前進行科研實踐,以培養實踐能力和研究素質。人工智能課程正好是大三高年級開設的專業課,因此,我們把課程實驗及設計與同學的興趣相結合,引導學生,并提煉和形成學生的畢業選題和課外的科研方向,它是提高本科生研究創新能力的有效手段。
基于新的教學實踐,很多學生的選題都與上述歸納的人工智能若干算法相關,如算法本身的研究和改進,或是算法在各領域,如數據挖掘、圖像處理等的應用。在我們的科研能力訓練計劃中,一批項目和課題,如混合神經網絡的研究與應用、差分演化算法研究與應用、基于協同訓練的推薦系統等,分別受到國家和學校本科生科研項目立項資助。一批三四年級的本科生以第一作者身份在國內核心期刊、國際會議和期刊上發表學術論文,這激發了學生的科研興趣,使學生體會到了創新的樂趣。
總之,課程學習與畢業論文、學校大學生科研項目資助計劃、國家大學生創新性實驗計劃相對接的科研訓練,極大地提升了學生的創新能力和科研基本素質。
4結語
針對人工智能的課程特點,我們積極開展研究型教學、研究型學習,提高大學生的學習能力、實踐能力和創新能力的研究與實踐。我們的教學研究與實踐主要內容包括三個方面:啟發式傳授人工智能解決問題的非結構化的思想;成體系的實驗訓練;以及與畢業論文、學校大學生科研項目資助計劃、國家大學生創新性實驗計劃相對接的科研訓練。這三個主要方面,層層遞進、環環相扣,是體系完整的創新型人工智能教學實踐,新的改革和實踐在教學中取得了令人滿意效果。
參考文獻:
[1] 張劍平. 關于人工智能教育的思考[J]. 電化教育研究,2003(1):24-28.
[2] 謝昆青. 第一個智能科學技術專業[J]. 計算機教育,2009(11):16-20.
[3] 羅輝,梁艷春. 大學生畢業論文與科研能力培養及就業[J]. 吉林教育,2003(10):18.
[4] 金聰,劉金安. 人工智能教育在能力培養中的作用及改革設想[J]. 計算機時代,2006(9):66-69.
Reform and Practice of Innovative Teaching in Artificial Intelligence
WANG Jia-hai, YIN Jian, LING Ying-biao
(Department of Computer Science, Sun Yat-sen University, Guangzhou 510006, China)
關鍵詞:人工智能技術;教學方法;編程能力
中圖分類號:TP3 文獻標識碼:A 文章編號:1009-3044(2014)16-3865-02
1 概述
2008年11月16日,中國科協成立50周年新聞會在北京召開。在新聞會上,“五個10”系列評選活動,即10位傳播科技的優秀人物、10部公眾喜愛的科普作品、10個公眾關注的科技問題、10個影響中國的科技事件、10項引領未來的科學技術評選結果揭曉。10項引領未來的科學技術是:基因修飾技術;未來家庭機器人;新型電池;人工智能技術;超高速交通工具;干細胞技術;光電信息技術;可服用診療芯片;感冒疫苗;無線能量傳輸技術。
人工智能技術學科是計算機科學中涉及研究、設計和應用智能機器的一個分支。指人類的各種腦力勞動或智能行為,諸如判斷、推理、證明、判別、感知、理解、通信、設計、思考、規劃、學習和問題求解等思維活動,可以用某種智能化的機器來予以人工實現[1]。
通過《人工智能技術》課程的學習,使學生對人工智能技術的發展概況、基本原理和應用領域有深入了解、對主要技術及應用有一定掌握,并對現代人工智能技術發展的方向有所研究。通過人工智能技術課程的學習與研究,啟發學生對人工智能技術的興趣,培養知識創新和技術創新能力,并能將人工智能技術融入到今后所開發的計算機軟件之中。
《人工智能技術》是一門眾多學科交叉的新興課程,其涵蓋范圍廣,涉及知識點多,知識更新快,內容抽象,不容易理解,理論性強,而且需要較好的數學基礎和較強的邏輯思維能力,這給該課程的講授帶來了一定困難。《人工智能技術》也是一門應用型學科,怎樣將理論運用到實踐中,使學生將學到的人工智能技術知識和思想運用到自己的實際課題,這也是該課程需要解決的問題之一。
因此,對《人工智能技術》課程教學來說,我們要了解課程的最新信息,把握課程的特點,幫助學生找到好的學習方法,使他們能充分發揮自己的創新思維能力,提高學習興趣,該文給出了《人工智能技術》課程的教學與實踐的探索。
2 教學與實踐的探索
2.1 教材和實驗教學內容的選取
1) 人工智能技術是整個計算機科學領域發展最快,知識更新最快,最前沿的學科之一。在教材選用方面,我們采用了蔡自興教授等主編,由高等教育出版社出版的《人工智能基礎》這本教材。蔡自興教授的主要研究領域為人工智能、機器人學和智能控制等。這本教材是作者在美國國家工程院院士、普度大學教授傅京孫先生的指導和鼓勵下編寫,借鑒了國內外人工智能技術研究領域專家的最新研究成果和學術書籍的長處,該書比較全面地介紹了人工智能技術的基礎知識與技術,材料新,易于理解,兼顧基礎及應用[2]。
此外,我們還給學生自主學習提供多種類型的學習資料,其中包括參考書目,如:Russel S, Norvig P.等編著的《Artificial Intelligence: A Modern Approach》一書,人工智能技術國內外期刊,如電子學報,計算機學報,人工智能與模式識別,Artificial Intelligence,Journal of Artificial Intelligence Research,Engineering Applications of Artificial Intelligence和International Joint Conference on Artificial Intelligence,AAAI: American Association for AI National Conference等人工智能技術會議,使學生能夠掌握人工智能技術的更多前沿動態,提高學習興趣。
2) 配套的實驗教學內容。《人工智能技術》是一門理論性和實踐性都很強的課程,實踐性教學環節對該課程尤為重要。除了完成課本上的作業之外,還注重實驗教學,培養學生的創新能力、算法設計能力和編程能力。首先,每個章節設置相應的實驗,而實驗內容經過嚴格的考慮,如:五子棋游戲,產生式系統,旅行商問題,傳教士和野人問題,BP神經網絡實現簡單的分類,遺傳算法、人工生命程序等,要求學生運用所學章節的知識,獨立地設計和實現實驗內容。實驗報告包括簡述實驗原理及方法,給出程序設計流程圖,源程序清單,實驗結果及分析等內容,通過這種方式,進一步加強學生的信息獲取能力和研究能力。
2.2 教學方法和手段的改革
人工智能技術課程交叉性強,涉及面廣,傳統的教學方法手段單一,缺少交流,課堂氣氛沉悶,激發不起學生的學習興趣,教學效果不理想。人工智能技術這門課程內容抽象,如何激發學生的學習興趣是本課程需要解決的主要問題,也是關系教學改革成敗的關鍵。本課程需采用多種方法進行教學,以此來激發學生的學習興趣。
1) 問題啟發式教學。《人工智能技術》這門課程中有很多似是而非、引人入勝的問題,主要是用計算機模擬人類的智能來解決這種問題。在教學中,有目的的提出這些問題,鼓勵學生思考,提出自己的想法和解決方案,并進行分析和比較,這樣強化學生的主動學習意識,提高學習積極性[3]。
2) 個性化學習和因材施教。學生中存在計算機專業和非計算機專業本科畢業的差別,由于他們每個人的基礎不同,有的計算機知識比較匱乏,因此有必要針對每個學生的學習進度,課堂作業和實驗報告情況進行及時評估,對學生提出個性化的教學。例如:在實驗教學中,要求有能力和興趣的學生可以做探究性和創新性的附加實驗,從而引導學生發揮個性的空間,而對稍微吃力的學生則要求完成基本的實驗,更注重基礎知識的學習和夯實,這樣就能達到因材施教的目的。同時對不同層次的學生進行分析,進一步提出學習建議,并進行有針對性的指導。
3) 多媒體使用和多學科知識的融合。本課程PPT課件圖文并茂,提綱挈領,便于學生理解。課堂講授、板書與PPT手段相結合,注重課程中的關鍵詞用英文表示,并適當指定英文參考書,使學生能夠接觸國外文獻資料,加深對學習內容的理解,獲得更寬廣的知識。PPT課件運用了大量多媒體技術,如動畫、聲音、圖像,通過動畫和視頻演示抽象的概念、算法和過程,使人工智能技術中抽象的知識形象化,在課件中融入了文學,歷史等其他學科的相關知識,便于學生較好地理解知識難點和重點[4]。
4) 師生互動和課內外答疑。在教學中,改變了傳統的老師講,學生聽的教學模式。針對人工智能技術的實用性,適當提問,收集學生學習情況,盡量使用實例進行講解。設置了實驗講解互動課程,對于實驗的講解,學生可以提出疑問,然后在課堂上展開討論,學生可以看到問題從提出、分析到解決的整個過程,讓學生自己在討論中總結結論。為了解決教學中存在的疑難問題,還設有課后答疑,使學生能將所有的問題都理解透徹。
5) 理論研究與實踐結合。在教學內容的安排上,注重學生的理論研究和動手能力,適當布置一些課程相關的論文和實驗編程。通過課程論文,可以培養學生鉆研問題的興趣; 通過查閱科技文獻使學生掌握如何查找相關文獻的技能,可以培養學生撰寫科技論文的能力。通過實驗實踐,使學生可以更加清楚地了解人工智能技術基本概念和難點,也能了解算法的設計具體運行過程,并對其進行驗證,提高了學生的編程能力和和學習興趣。
6) 考試考核方式改革。本課程的考核考試也是一個值得探討的問題,本課程應采用多種綜合考試方法,注重學生對基礎概念、知識和基本的技能的掌握以及理論聯系實際的能力。平時作業考核成績,實驗實踐教學成績、提交課程論文成績,以及最后的期末考試成績形成一種有效的考試考核方法,促進學生主動學習,提高教學質量。實驗的評價指標在于算法設計、編程的準確性和實驗結果及分析。課程論文評價指是選題是否嚴謹科學和具可研究性,論文結構、思路是否嚴謹,論文內容科學性、正確性,能否提出自己的見解。考查查閱科技文獻的能力主要通過是否查找到權威的、最新文獻以及撰寫是否規范。
2.3 學生學好《人工智能技術》課程的建議
《人工智能技術》是一門理論與實踐相結合的應用課程,學生如何學習這么課程,也是我們應該探討的問題。
學生應該正確看待《人工智能技術》這門科學的發展。人工智能技術孕育于20世紀30、40年代,形成于60、70年代,發展至今,人工智能技術只有短短60多年的歷史,它是一門不斷發展和完善的嶄新學科,還有許多課題處于探索中,理論和技術還遠未成熟,我們應該對它有科學的認識。
針對非計算機專業本科畢業的學生,除了課堂聽講之外,還應該課下自學該課程的先修課程,如:數據結構、離散數學等課程。人工智能技術中涉及到大量的數學知識,如:模式識別需要具有較好的概率論,數理統計知識,另外還會用到少量隨機過程、模糊數學的一些知識。人工智能技術是一門應用課程,編程語言的掌握必不可少,涉及到SVM算法,粒子群算法,免疫算法神經網絡,遺傳算法等算法,實現這些算法要求學生具有較強的編程能力。
學生應該多讀,多查閱資料,特別是國外的期刊文獻和重要國際會議論文,多了解人工智能技術最前沿的信息,理論聯系實際,加深對基本算法的理解,并將人工智能技術的知識運用到自己所研究的領域,以做到學以致用。
3 結論
人工智能技術在一定程度上代表著信息技術的前沿,該文對《人工智能技術》的課程教學進行了一些探討,教學與實踐效果有了顯著提高,但仍然有許多方面還需要我們繼續探討和改進。
參考文獻:
[1] 蔡自興,徐光佑.人工智能技術及其應用[M].北京: 清華大學出版社,2003.
[2] 蔡自興,肖曉明,蒙祖強,等.樹立精品意識搞好人工智能技術課程建設[J].中國大學教學,2004(1):28-29.