前言:我們精心挑選了數篇優質能量計量論文文章,供您閱讀參考。期待這些文章能為您帶來啟發,助您在寫作的道路上更上一層樓。
竊電行為是用電人員為了達到不交電費而用電的目的,采取的一種“免費”用電的非法手段。由于電能表的電能計量主要是根據電能計算方式進行計算的,主要計算因素有電壓、電流、功率、時間,是一種將各種元素相結合的計算方式,任一元素的更改或者無記錄,都會造成電能表計量的不準確,非法人員就是根據這種電能表的工作原理鉆漏洞的。目前非法人員的主要竊電手段分為兩大類:其一,在電表和回路上動手腳,使電能計量減少或者無記錄;其二,在電能計量開始前的回路上竊電,使電能表不計電。其主要竊電方式分為很多種,有改變電壓、電流正常回路的欠壓法竊電和欠流法竊電,有改變電能表正常接線或者拆卸電表能的移相法竊電和擴差法竊電,還有私自進行線路接電的無表法竊電,以及采用高技術改變電能表編程的新技術法竊電等。竊電行為隨著科技的發展和人們知識水平的提升而變得越來越多樣化,竊電技術也越來越先進,嚴重影響到用戶的合理用電和電力營銷系統的正常運行,給人們的生活和社會秩序的營造進程帶來很多的麻煩,電力企業急需尋求解決辦法,從技術上杜絕這種不良現象的再次發生。
2供電稽查工作中電能計量技術的應用
電能計量技術是當前電力企業應用于電量稽查工作中,用來預防非法竊電,加強電能計量數據的準確性,保證用戶合理用電的重要計電手段,用電能計量技術的遠程控制技術和電子智能計算技術對供電系統進行時時監測和數字化計算,營造市場上良好的供電秩序。
2.1電能計量智能化,提高工作效率
在以前,供電稽查工作大多都是采用人工實地操作的方法,需要專業的工作人員到現場通過記錄電能表的電量數據,然后根據電量計算公式進行電費計算,這種做法比較傳統,持續時間長,工作效率低;而且由于人工操作不精密,容易在數據的記錄和計算上出現誤差,導致出現電能計量數據的不準確和計算錯誤的現象,給用戶和企業雙方帶來不便。現在的供電稽查工作涉及范圍變得更加廣泛,已經不僅僅是只檢測設備這么簡單,還增添了電力的遠程控制功能,對電力的使用情況進行時時監控,減少人員的來回奔波,大大的提高了工作效率;通過技術上的改善,保障了電能計量數據的準確性,減小誤差,提高了電能數據的準確性與穩定性,促進了電力企業科技化、信息化、智能化的發展進程。
2.2防竊電等違章用電行為
電力企業對于防竊電行為的措施研究由來已久,除了安裝高性能電能表、合理布置電線、加固電能表防護措施、完善電力營銷系統外,電能計量技術也能夠在一定程度上預防竊電等違章用電行為,對供電系統的合理運行具有重要作用。由于電能計量的數字化技術,工作人員進行電力稽查工作時能夠及時發現不當用電行為,及時對違章用戶進行處理,最大限度的減少電力損失;根據已掌握的用戶用電情況進行電量數額控制,增加相關的電力監控設備,一旦出現特殊用電情況,就能夠及時發現違章用電行為,并制定相關處罰措施進行規范管理,加大懲罰力度,將違章用電等非法行為扼殺在搖籃中,減少電力損失,規范供電秩序,為電力稽查工作提供方便。
2.3減少工作人員工作量
現在很多電力企業中,工作人員充足,但是缺乏先進的技術和設備,工作人員在進行電力稽查工作時,大多采取傳統的人工抄表辦法,然后進行電費計算。電能稽查工作中的數據記錄環節很重要,一旦出現人工失誤,相關聯的電量計算也會受到影響,導致電能稽查結果的不客觀、不準確。將電能計量技術應用與供電稽查工作,采用電子數據采集和智能化電量控制,保證電能數據的可靠性和穩定性,不受外界影響,并對電量進行遠程控制計算,減少員工的來回奔波路程和電量計算過程,減少供電稽查工作的工作量,同樣提高工作人員的工作效率。
目前,工業企業使用的能源流量計量裝置應用最廣泛的為孔板節流式計量流量計(占70%以上)。孔板節流式流量計的測量原理是流體通過節流裝置時,由于通過節流裝置的流體有限,流體將在節流孔板處收縮成束狀,流速加快,靜壓力降低,致使節流孔板前后產生壓力差,這種壓力差和流體流量成正比。另外,孔板節流式計量裝置長期在工業企業使用,對流體適應性廣泛,具有完整的使用體系,技術成熟,但仍存在不足之處,主要問題如下:
1)裝置結構較為笨重。孔板節流裝置的質量平均在100kg左右,對于裝置中的管道需要進行整體安裝,需用吊裝機械和其他機械設備配合使用,安裝要求較高、施工量較大、維護檢修難度較大。
2)流體通過節流裝置后產生了較大的永久壓損,相關的實驗數據顯示,永久壓損ppl=(0.5~0.6)ΔP,約為20~50kPa(節能型節流裝置永久壓損ppl=0.3ΔP)。在檢測流量計量過程中,被測流體通過孔板節流裝置時會產生漩渦,在行進的過程中流體和裝置不斷摩擦,流體自身存在的機械能轉換為熱能,在流體中以水蒸氣的形式消失,所以,節流后流體的靜壓力不等于節流前的靜壓力。
2流量計中節能技術的應用
為解決傳統流量計存在的不足,研發人員開發了節能高效的流量計量系統,以下2種流量計被廣泛應用。
2.1畢托巴流量計
畢托巴流量計具有測量介質范圍廣(風、煙、水、汽、氣、油)、耐高溫高壓、防堵、耐磨、耐腐蝕、壓力損失小、安裝簡便、無需維護、節能環保等優質性能,前景非常廣闊。
2.1.1畢托巴流量計的特點
1)畢托巴流量計的設計采用高精度探頭在風洞或水洞上全量程標定,探針直徑選擇為20mm的不銹鋼材料,在截面積很小的管道中壓力的損失也可降到最小甚至為零。
2)流量測量具有高準確度、高強度和大量程比等性能。
3)該裝置構造簡單、可靠性高。通過測量,該裝置內部導壓管中無介質流動,阻斷了雜物和內部管道的接觸,使測試具有高精度。
4)安裝方便。無論是直管段或是彎管段都能安裝,由傳統的直管段改進為多種彎管段以及多倍管徑。
5)該裝置可以在線安裝和檢修,同時可直接顯示和流量相關的數據,憑借其智能特性可進行遠程集中管理,節省成本,準確度高。
2.2V型錐流量計
V型錐流量計和傳統差壓式流量計的組成部分基本相同,都是由三閥組、引壓管、變壓變送器組成質量流量測試系統。V型錐流量計是在管道的中心位置安裝一個椎體來控制節流,由于椎體前后差壓不同形成氣壓差,通過不同的氣壓測量流量。
2.2.1V型錐流量計的特點
1)V型錐流量計不僅可測量各種液體,而且對部分氣體、蒸汽和氣液兩相介質也能較為準確地測量。
2)V型錐流量計準確度較高、量程寬、永久壓損小、無直管段要求等,是新一代節流裝置中的典型代表。
3)V型錐流量計對于氣體和蒸汽等介質不僅能壓縮,而且還能實現溫度、壓力補償,組成質量流量測試系統。由于椎體在管線中心位置懸掛,同流體的高速沖擊區域直接接觸,使高速區的流體和近管壁低速區的流體強制性相混合從而使流速中和,達到均勻化。
2.2.2與傳統孔板流量計的應用對比
管道內徑702.4mm,工作壓力12kPa,溫度70℃,當地大氣壓力98.39kPa,工作密度1.0326kg/m3,孔板類型采用流量為25000m3/h,β為0.6955。在相同的條件下通過同等流量時,孔板的壓力損失為1.894kPa;V錐型流量計的壓力損失為0.479kPa,得出V型流量計比孔板型流量計能耗少12.283kWh。按照工業電費0.7元/kWh,每年按300天計算,V型流量計比孔板型流量計節約2579.43元。由此得出,V錐型流量計在節能方面具有較大的潛力。
關鍵詞:電能質量分析方法控制技術
0引言
隨著國民經濟的發展,科學技術的進步和生產過程的高度自動化,電網中各種非線性負荷及用戶不斷增長;各種復雜的、精密的,對電能質量敏感的用電設備越來越多。上述兩方面的矛盾越來越突出,用戶對電能質量的要求也更高,在這樣的環境下,探討電能質量領域的相關理論及其控制技術,分析我國電能質量管理和控制的發展趨勢,具有很強的觀實意義。
1衡量電能質量的主要指標
由于所處立場不同,關注或表征電能質量的角度不同,人們對電能質量的定義還未能達成完全的共識,但是對其主要技術指標都有較為一致的認識。
(1)電壓偏差(voltagedeviation):是電壓下跌(電壓跌落)和電壓上升(電壓隆起)的總稱。
(2)頻率偏差(friquencydeviation):對頻率質量的要求全網相同,不因用戶而異,各國對于該項偏差標準都有相關規定。
(3)電壓三相不平衡(unbalance):表現為電壓的最大偏移與三相電壓的平均值超過規定的標準。
(4)諧波和間諧波(harmonics&inter-hamonics):含有基波整數倍頻率的正弦電壓或電流稱為諧波。含有基波非整數倍頻率的正弦電壓或電流稱為間諧波,小于基波頻率的分數次諧波也屬于間諧波。
(5)電壓波動和閃變(fluctuation&flicker):電壓波動是指在包絡線內的電壓的有規則變動,或是幅值通常不超出0.9~1.1倍電壓范圍的一系列電壓隨機變化。閃變則是指電壓波動對照明燈的視覺影響。
2電能質量問題的產生
2.1電能質量問題的定義和分類
電能質量問題是眾多單一類型電力系統干擾問題的總稱,其實質是電壓質量問題。電能質量問題按產生和持續時間可分為穩態電能質量問題和動態電能質量問題。
2.2電能質量問題產生原因分析
隨著電力系統規模的不斷擴大,電力系統電能質量問題的產生主要有以下幾個原因。
2.2.1電力系統元件存在的非線性問題
電力系統元件的非線性問題主要包括:發電機產生的諧波;變壓器產生的諧波;直流輸電產生的諧波;輸電線路(特別是超高壓輸電線路)對諧波的放大作用。此外,還有變電站并聯電容器補償裝置等因素對諧波的影響。其中,直流輸電是目前電力系統最大的諧波源。
2.2.2非線性負荷
在工業和生活用電負載中,非線性負載占很大比例,這是電力系統諧波問題的主要來源。電弧爐(包括交流電弧爐和直流電弧爐)是主要的非線性負載,它的諧波主要是由起弧的時延和電弧的嚴重非線性引起的。居民生活負荷中,熒光燈的伏安特性是嚴重非線性的,也會引起嚴重的諧波電流,其中3次諧波的含量最高。大功率整流或變頻裝置也會產生嚴重的諧波電流,對電網造成嚴重污染,同時也使功率因數降低。
2.2.3電力系統故障
電力系統運行的內外故障也會造成電能質量問題,如各種短路故障、自然現象災害、人為誤操作、電網故障時發電機及勵磁系統的工作狀態的改變、故障保護裝置中的電力電子設備的啟動等都將造成各種電能質量問題。
3電能質量分析方法
3.1時域仿真法
時域仿真方法在電能質量分析中的應用最為廣泛,其最主要的用途是利用各種時域仿真程序對電能質量問題中的各種暫態現象進行研究。目前較通用的時域仿真程序有EMTP、EMTDC、NETOMAC等系統暫態仿真程序和SPICE、PSPICE、SABER等電力電子仿真程序。
采用時域仿真計算的缺點是仿真步長的選取決定了可模仿的最大頻率范圍,因此必須事先知道暫態過程的頻率覆蓋范圍。此外,在模仿開關的開合過程時,還會引起數值振蕩。
3.2頻域分析法
頻域分析方法主要包括頻率掃描、諧波潮流計算和混合諧波潮流計算等,該方法多用于電能質量中諧波問題的分析。
頻率掃描和諧波潮流計算在反映非線性負載動態特性方面有一定局限性,因此混合諧波潮流計算法在近些年中發展起來。其優點是可詳細考慮非線性負載控制系統的作用,因此可精確描述其動態特性。缺點是計算量大,求解過程復雜。
3.3基于變換的方法
在電能質量分析領域中廣泛應用的基于變換的方法主要有Fourier變換、神經網絡、二次變換、小波變換和Prony分析等5種方法。
3.3.1Fourier變換
Fourier變換是電能質量分析領域中的基本方法,在實時系統中,通常采用短時Fourier變換方法(STFT)和快速Fourier變換方法(FFT)。
Fourier變換的優點是算法快速簡單。但其缺點也很多:(1)雖然能夠將信號的時域特征和頻域特征聯系起來觀察,但不能將二者有機地結合起來。(2)只能適應于確定性的平穩信號(如諧波),對時變非平穩信號難以充分描述。(3)STFT的離散形式沒有正交展開,難以實現高效算法;只適合于分析特征尺度大致相同的過程,不適合分析多尺度過程和突變過程。(4)FFT變換的時間信息利用不充分,任何信號沖突都會導致整個頻帶的頻譜散布;在不滿足前提條件時,會產生“旁瓣”和“頻譜泄露”現象。
3.3.2神經網絡法
神經網絡理論是巨量信息并行處理和大規模平行計算的基礎,它既是高度非線性動力學系統,又是自適應組織系統,可用來描述認知、決策及控制的智能行為。
神經網絡法的優點是:(1)可處理多輸入-多輸出系統,具有自學習、自適應等特點。(2)不必建立精確數學模型,只考慮輸入輸出關系即可。缺點是:(1)存在局部極小問題,會出現局部收斂,影響系統的控制精度;(2)理想的訓練樣本提取困難,影響網絡的訓練速度和訓練質量;(3)網絡結構不易優化。
3.3.3二次變換法
二次變換是一種基于能量角度來考慮的新的時域變換方法。該方法的基本原理是用時間和頻率的雙線性函數來表示信號的能量函數。
二次變換的優點是:可以準確地檢測到信號發生尖銳變化的時刻;精確測量基波和諧波分量的幅值。缺點是:無法準確地估計原始信號的諧波分量幅值;不具有時域分析功能。
3.3.4小波分析法
小波變換是新的多尺度分析數字技術,它通過對時間序列過程從低分辨率到高分辨率的分析,顯示過程變化的整體特征和局部變化行為。常用的小波基函數有:Daubechies小波、B小波、Morlet小波Meyer小波等。
小波變換的優點是:(1)具有時-頻局部化的特點,特別適合突變信號和不平穩信號分析。(2)可以對信號進行去噪、識別和數據壓縮、還原等。缺點是:(1)在實時系統中運算量較大,需要如DSP等高價格的高速芯片。(2)小波分析有“邊緣效應”,邊界數據處理會占用較多時間,并帶來一定誤差。
3.3.5Prony分析法
Prony分析衰減的思想類似于小波。在該方法中,信號總是被認為可以由一系列的衰減的正弦波構成,這些衰減正弦波類似于小波函數。所以Prony分析方法和小波一樣,可以做多尺度的信號分析。Prony分析的主要缺點是計算時間過長。
4電能質量的控制策略與技術
4.1幾種電能質量控制策略
(1)PID控制:這是應用最為廣泛的調節器控制規律,其結構簡單、穩定性好、工作可靠、調整方便,易于在工程中實現。當被控對象的結構和參數不能完全掌握,或得不到精確的數學模型時,應用PID控制技術最為方便。其缺點是:響應有超調,對系統參數攝動和抗負載擾動能力較差。
(2)空間矢量控制:空間矢量控制也是一種較為常規的控制方法。其原理是:將基于三相靜止坐標系(abc)的交流量經過派克變換得到基于旋轉坐標系(dq)的直流量從而實現解耦控制。常規的矢量控制方法一般采用DSP進行處理,具有良好的穩態性能與暫態性能。也可采用簡化算法以縮短實時運算時間。
(3)模糊邏輯控制:知道被控對象精確的數學模型是使用經典控制理論的"頻域法"和現代控制理論的“時域法”設計控制器的前提條件。模糊控制作為一種新的智能控制方法,無需對系統建立精確的數學模型。它通過模擬人的思維和語言中對模糊信息的表達和處理方式,對系統特征進行模糊描述,來降低獲取系統動態和靜態特征量付出的代價。
(4)非線性魯棒控制:超導儲能裝置(SMES)實際運行時會受到各種不確定性的影響,因此可通過對SMES的確定性模型引入干擾,得到非線性二階魯棒模型。對此非線性模型,既可應用反饋線性化方法使之全局線性化,再利用所有線性系統的控制規律進行控制,也可直接采用魯棒控制理論設計控制器。
4.2FACTS技術
FACTS,即基于電力電子控制技術的靈活交流輸電,是上世紀80年代末期由美國電力研究院(EPRI)提出的。它通過控制電力系統的基本參數來靈活控制系統潮流,使輸送容量更接近線路的熱穩極限。采用FACTS技術的核心目的是加強交流輸電系統的可控性和增大其電力傳輸能力。
目前有代表性的FACTS裝置主要有:可控串聯補償電容器、靜止無功補償器、晶閘管控制的串聯投切電容器、統一潮流控制器等。
4.3用戶電力(CustomPower)技術
用戶電力技術就是將電力電子技術、微處理機技術、自動控制技術等運用于中低壓配電系統和用電系統中,其目的是加強配電系統的供電可靠性,并減小諧波畸變,改善電能質量。該技術的核心器件IGBT比GTO具有更快的開關頻率,并且關斷容量已達MVA級,因此DFACTS裝置具有更快的響應特性。
用戶電力技術概念的提出,有助于供電部門提供高可靠性和高質量的電力,也有助于滿足各種新工藝用戶對電力供應的更高要求。目前主要的DFACTS裝置有:有源濾波器(APF)、動態電壓恢復器(DVR)、配電系統用靜止無功補償器(D-STATCOM)、固態切換開關(SSTS)等。
5電能質量控制的發展方向
5.1研究電能質量分析控制領域的基礎性工作
一方面要深入探索電能質量領域的基礎性研究工作,包括電能質量的定義、評價標準與體系,電能質量問題的表現形式、影響因素、防治方法等。同時,積極研究電能質量控制的新方法、新技術和新策略,將更為先進、科學的控制理念和控制思想借鑒到電能質量管理領域。
5.2推廣使用數字化電能質量控制技術
以DSP為基礎的實時數字信號處理技術在控制領域得到廣泛應用,其優點為:①可提高系統穩定性、可靠性和靈活性;②由程序控制,改變控制方法或算法時不必改變控制電路;③可重復性好,易調試和批量生產;④易實現并聯運行和智能化控制。隨著DSP性能的不斷改善和價格的下降,電能質量控制裝置將用DSP來實現實時信號處理從而取代模擬量控制。
5.3對電能質量檢測技術的新要求
傳統的檢測儀器一般局限于持續性和穩定性指標的檢測,而且僅測有效值已不能精確描述實際的電能質量問題,因此需要發展新的監測技術。具體要求包括:①能捕捉快速(ms級甚至ns級)瞬時干擾的波形;②需要測量各次諧波以及間諧波的幅值、相位;③需要有足夠高的采樣速率,以便能和得相當高次諧波的信息。④建立有效的分析和自動辯識系統,反映各種電能質量指標的特征及其隨時間的變化規律。
5.4大力發展應用新技術
電力電子技術的應用可以大大提高電網的電能質量,FACTS、CusPow等新技術更是為解決電能質量問題開拓了廣闊的前景,同時一些非電力電子技術的發展也很迅猛,將這些技術融合發展,并合理使用、大力推廣,必然會逐步滿足電力負荷對電能質量日益提高的要求。
參考文獻
[1]DuganRC,MegranghanMF,BentyHW.E1ectricalpowersystemsquality[M].NewYork:McGrawHill,1996.
[2]DaubechiesI.Tenlecturesonwavelets[C].Philadelphia,Pennsylvania,SIAMMathematicalAnalysis,1992.
[3]ArumArora,etal.InnovativeSystemSolutionsforPowerQualityEnhancement[J].ABBReview,1998,(3):4-12.