美章網 精品范文 輸電技術論文范文

    輸電技術論文范文

    前言:我們精心挑選了數篇優質輸電技術論文文章,供您閱讀參考。期待這些文章能為您帶來啟發,助您在寫作的道路上更上一層樓。

    輸電技術論文

    第1篇

    1.1氧氣:中性介質中金屬腐蝕主要為氧的去極化過程。

    沒有氧氣,金屬的大氣腐蝕不會發生。有資料證明,鍍鋅的鐵釘泡在脫氧的海水中幾十年仍保持光澤。金屬表面上吸附的水膜相當薄,大氣中的氧易溶于其中并擴散到金屬表面陰極區,使氧的進極化過程進行甚為順利,故氧在大氣對金屬腐蝕中常起著主要作用。

    1.2溫度:輸電線路鐵塔在大氣腐蝕中,當相對濕度處于臨界面狀態以上時,反應速度才隨溫度的提高而增加。

    每當溫度提高10℃,腐蝕速度增加一倍。如果溫度急降時,相對濕度大大增加,甚至產生凝露,就會促進腐蝕。例如在晝夜溫差大的地區或季節,環境溫度大幅度下降,金屬表面就很容易凝結水膜而銹蝕。

    1.3大氣中污染物:大氣中除了水汽和空氣以外,還含有各種各樣的污染雜質,并且因地區而異。

    氣體雜質如:SO2、氮的氧化物、CO2、HCl等。海洋大氣中包括有含鹽分的粒子。在工業地區,固體的塵埃每月每平方公里上落降數量達數十噸之多。這些塵埃包括有腐蝕性的與非腐蝕性的,有促進腐蝕作用的各種粒子。

    2輸電設備防腐的由來

    鍍鋅角鐵塔是輸電線路常用鐵件材料,已有相當長的歷史應用。另外其它鍍鋅件也在逐漸擴大應用范圍,如鋼管桿、鋼管組合塔、鍍鋅橫擔、金具、鍍鋅燈桿等。一般鍍鋅件表面在涂裝前,施工單位一般要做一下擦凈油污的簡單表面清潔、除銹工作后就涂以普通的油漆,如醇酸磁漆,油性紅丹漆等,這樣的涂裝效果就很差,使用不久后就發生脫落。許多應用部門并未了解鍍鋅件表面漆膜剝落的原因,往往認為是油漆質量不高,而不知是選擇涂料和涂裝工藝不當所引起。油脂類涂料或醇酸涂料均含有干性油,含許多雙健,在鈷、錳皂等催化下迅速氧化而干燥成膜,但它們成膜后氧化作用并不停止,還在緩慢地進行。由于氧化作用,會產生許多副產品物醛和羧酸,包括蟻酸。這類酸能與鋅元素起反應,生成如蟻酸鋅的鹽類,具有一定的水溶性,而使體積膨脹許多倍,這樣就造成涂膜的附著力下降,結果是涂膜的大片剝落。

    3輸電設備防腐方案的設計關鍵

    3.1材料的選擇

    正確地選擇防腐材料對于輸電線路的防腐蝕是非常重要的一個環節,由于廣東地區多數是潮濕海洋性氣候,所以只有選擇耐潮耐堿、耐酸及抗擊紫外線曝曬的涂料,才能使設備得到有效的保護。

    3.2防腐蝕結構涂層的設計

    涂層的結構形式對輸電線路因化工大氣、酸、堿、引起的大面積腐蝕、縫隙腐蝕等關系很大。應根椐設備所處實際環境狀況及結合涂料的準確數據來制定涂層的結構,目前比較流行的主要采用3~4層,由面漆、中間漆和底漆組成。常用的底漆包括紅丹防銹底漆、環氧富鋅防銹底漆;常用的中間漆包括J6502鋁鐵氯化橡膠中間防銹中間漆、環氧云鐵防銹中間漆;常用的面漆包括醇酸磁漆、氯化橡膠面磁漆、丙稀酸面磁漆。針對高壓輸電線路所處的地理位置和氣候情況,桿塔的防腐工作必須要多道涂層才能滿足防腐蝕的要求,并且底漆、中間漆、面漆設計要根椐周邊環境的工業及污染狀況而定。

    4現場的對比分析

    根據以往的施工經驗,我們選擇設計了三種不同的防腐方案,于2004年9月份分別在110kV碧開線和碧開線文沖支(同塔雙回路)上進行了實驗對比:方案A——底漆:紅丹防銹底漆兩遍;面漆:醇酸磁漆面漆兩遍。用于110kV碧開線#01~#04鐵塔防腐。方案B——底漆:環氧富鋅防銹底漆一遍;中間漆:J6502鋁鐵氯化橡膠中間防銹中間漆一遍;面漆:氯化橡膠面磁漆兩遍。用于110kV文沖支線#01~#05鐵塔防腐。方案C——底漆:環氧富鋅防銹底漆一遍;中間漆:環氧云鐵防銹中間漆一遍;面漆:丙稀酸面磁漆兩遍。用于110kV文沖支線#06~#09鐵塔防腐。

    4.1方案A

    4.1.1紅丹防銹底漆的技術特點紅丹:又名鉛丹,分子式Pb3O4,含有2%~15%的PbO。紅丹應用歷史悠久,從19世紀中葉起就一直作為緩蝕材料使用,至今仍未衰敗。它和亞麻油配制的油性底漆具有良好的防銹性能,對于被涂裝的鐵塔金屬表面處理要求不高,涂在鐵塔帶銹帶油狀態下的表面仍有很好的防銹效果。(1)紅丹防銹底漆的優點①紅丹防銹漆主要是靠晶格離子的交換作用在陽極區和陰極區均起緩蝕作用。紅丹防銹漆在陰極區的作用是能破壞新生的過氧化氫,抑制鋼鐵表面不再氧化。紅丹在水和氧的存在下,能與油性漆料生成鉛皂,進一步分解成短鏈產物后,具有很好的緩蝕作用。②紅丹具有很高的氧化能力,在與鋼鐵表面接觸時,能使表面氧化成Fe3O4的均勻薄膜,使鋼鐵表面鈍化而防腐。(2)紅丹防銹底漆的缺點①油漆的毒性和對環境的污染。紅丹防銹漆含有大量的鉛化物,不僅在油漆生產和施工中會引起工作人員的慢性鉛中毒,而且在去除舊紅丹漆膜時會造成環境嚴重的污染。②紅丹防銹漆的油性基料耐堿性差,不耐鹽霧、海水的浸漬或化學品濺滴。而且漆膜交聯度低,不耐酮類、酯類、芳烴等強溶劑,紅丹防銹底漆只能配套醇酸面漆涂料,不可與強溶劑的環氧、聚氨酯等涂料配套,以免咬起,故紅丹防銹底漆只能適宜于城鄉的普通鋼結構、江河的橋梁等,不宜適用于海洋環境、化工廠的鍍鋅鋼結構上。③由于紅丹防銹漆含有鉛類重金屬,不可用于鋁、鎂、鍍鋅的輸電鐵塔等輕型金屬表面上,以免引起電偶腐蝕。4.1.2醇酸磁面漆的技術特點醇酸磁面漆是以醇酸樹脂以多元醇和多元酸的酯為主鏈,以脂肪酸為側鏈構成的。醇酸脂中含植物油的百分數不同而分為短油度(45%以下)、中油度(46%~60%)和長油度(61%)。醇酸磁漆價格便宜,原料宜得,在國內涂料總產量中約占25%~30%。自干醇酸涂料品種眾多,應用面廣泛。有代表性的戶外醇酸品種有CO4-42各色醇酸磁漆,CO4-53醇酸防銹底漆。其中用于輸、變電設備的醇酸磁漆耐久性只能達到3年左右,抗紫外線、抗酸雨能力較差。4.1.3應用與效果2007年10月對110kV碧開線#01~#04段進行檢查、檢測發現漆面顏色變淡,失去光澤,小部分脫落,漆面硬度變軟,有部分經摩擦起粉狀,防腐功能明顯降低,綜上所述,方案A的防銹周期是三年左右。

    4.2方案B

    4.2.1環氧富鋅的特點它是用環氧樹脂、超細鋅粉、填料和混合有機溶劑制成組分一,使用時按比例加入組分二,使用時按比例混勻。在被涂金屬表面不能完全清除銹蝕后,不能做到完全滲入表面的不規則部位時,采用環氧富鋅防銹底漆能提供優良滲透及保護性能。鋅做為一種犧牲金屬,保護了鋼鐵不受腐蝕。4.2.2J6502鋁鐵氯化橡膠中間防銹漆的特點它是由氯化橡膠加入氧化鐵紅等顏料經研磨后加入鋁銀漿、助劑及有機溶劑調制而成。漆膜干燥快、耐水、防潮,具有良好的防腐性和防銹性。4.2.3氯化橡膠磁面磁漆的特點它是由天然橡膠或合成的異戊橡膠降解后氯化而得,呈白色粉末。氯化橡膠磁面磁漆有優良的耐水性、耐候性,在防腐及其它方面得到了廣泛應用。由于制造過程中需要大量四氯化碳,產生大量四氯化碳蒸汽,帶來污染問題,有致癌的報道,處于不發展狀態。國外采用其它氯化烯烴樹脂代替氯化橡膠。4.2.4應用與效果2007年10月對110kV文沖支線#01~#05段進行檢查、檢測發現漆面顏色光亮,未發現脫落現象,漆面硬度正常,經摩擦不會起粉狀,防腐功能完好。2009年9月又對110kV文沖支線#01~#05段進行檢查、檢測發現漆面顏色變淡,失去光澤,小部分脫落,漆面硬度變軟,有部分經摩擦起粉狀,防腐功能明顯降低,綜上所述,方案B的防銹周期是五年。

    4.3方案C

    4.3.1環氧富鋅防銹底漆的特點它是以環氧樹脂、超細鋅粉、填料和混合有機溶劑制成組分一,使用時按比例加入組分二,使用時按比例混勻。在被涂金屬表面不能完全清除銹蝕后,不能做到完全滲入表面的不規則部位時,采用環氧富鋅防銹底漆能提供優良滲透及保護性能。鋅做為一種犧牲金屬,保護了鋼鐵不受腐蝕。4.3.2環氧云鐵防銹中間漆的特點它是以環氧樹脂、云母氧化鐵粉、防銹顏料、有機溶劑調制為甲組分,由聚酰胺樹脂液組成乙組分。云母氧化鐵簡稱云鐵。它的主要成分是a-Fe2O3,一種特殊形狀的赤鐵礦,呈薄片狀的結晶體。它的耐堿性好,但對酸較為敏感,顏料很容易為所有的涂料基料和溶劑所潤濕,且水溶性很低。4.3.3丙稀酸面磁漆的特點它是以(甲基)丙烯酸及苯乙烯為主的含雙健的單體,在一定條件下通過自由基聚合的高聚物。該涂料具有極高的裝飾性、突出優點是耐候性好,在長期暴曬下,涂層保光、保色性好,在航空航天器材、汽車工業、戶外輸、變電設備等方面得到廣泛應用。國內定型產品有B04-11各色丙稀酸磁漆(自干)、B04各色丙稀酸烘干磁漆。4.3.4應用與效果2007年10月對110kV文沖支線#06~#09段進行檢查、檢測發現漆面顏色光亮,未發現脫落現象,漆面硬度正常,經摩擦不會起粉狀,防腐功能完好。2009年9月第二次對110kV文沖支線#06~#09段進行檢查、檢測發現漆面顏色稍為變淡,未發現脫落現象,漆面硬度正常,漆面經摩擦不會起粉狀,防腐功能完好,2012年9月份第三次對110kV文沖支線#06~#09段進行檢查、檢測發現漆面顏色變淡,未發現脫落現象,有小部分漆面澎脹,漆面硬度正常,漆面經摩擦不會起粉狀,對環境污染影響較少,防腐功能開始下降,綜合上述,方案C的防銹周期達八年以上。

    5選擇涂料的實用性和經濟性

    正確的選擇材料對于輸電線路的桿塔防腐是非常重要的一環,在選擇涂每條輸電線路之前,都要確定使用該涂料的預定壽命。通過對材料組成、使用檢測情況、經濟指標等一系列的分析比較,丙稀酸是一種防腐性能優異、保色、保光性能良好的環保型涂料,有效耐用時間已證實了這方面的性能優勢,雖然比普通涂料昂貴一些,但有效地減少設備的維護周期。它一次性投資相比普通涂料高,但保護設備耐蝕時間最長,是氯化橡膠磁漆的2倍,是普通涂料的3倍。防腐工程成本,環氧丙稀酸漆每噸塔材的防腐成本是普通醇酸磁漆1.6倍,是氯化橡膠磁漆1.2倍。

    6結語

    第2篇

    1.1直流輸電系統構成

    糯扎渡直流輸電系統的構成主要由整流站(普洱換流站)、逆變站(江門換流站)和直流輸電線路構成,江門換流站在糯扎渡工程中必要時也可作為整流站向云南普洱換流站送電,實現功率反送。直流輸電工程有雙極方式、單極大地回線方式、單極金屬回線方式、單極雙導線并聯大地回線方式等多種運行方式,糯扎渡直流工程采用雙極(正極和負極)兩端中性點接地方式,利用正負兩極導線和兩端換流站的正負兩極相連,構成直流側閉環回路。兩端接地極所形成的大地回路,可作為輸電系統的備用導線,正常運行時,直流電流的路徑為正負兩根極線。正負兩極在地回路中的電流方向相反,地中的電流為兩極電流的差值。兩極中的任一極均能構成一個獨立的運行單極輸電系統(如糯扎渡工程2013年9月3日投運的極2閥組2系統)。

    1.212脈動換流器

    江門換流站采用的12脈動換流器是由兩個6脈動換流器在直流側串聯而成,其交流側通過換流變壓器的網側繞組并聯。換流變壓器的閥側繞組一個為星形接線,另一個為三角形接線,從而使得兩個6脈動換流閥的交流側得到相位相差30°的換相電源。12脈動換流器由V1-V12共12個換流閥組成,在每一個工頻周期內有12個換流閥輪流導通,它需要12個與交流系統同步的間距為30°的按序觸發脈沖。12脈沖換流器的優點之一就是其直流電壓的質量好,所含諧波成分少。其直流電壓為兩個換相電壓相差30°的6脈沖換流器的直流電壓之和,在每個工頻周期內有12個脈動數,稱為12脈動換流器。直流電壓中僅含有12k次的諧波,而每個6脈動換流器直流電壓中含有6(2k+1)次諧波,因此彼此的相位相反而相互抵消,有效的改善了直流側的諧波性能。12脈動換流器的另一個優點是其交流電流質量好,諧波成分少。交流電流中僅含12k+1次諧波,每個6脈動換流器交流電流中的6(2k-1)次諧波在兩個換流變壓器之間環流,不進入交流電網,12脈動換流器的交流電流中不含這些諧波,有效的改善了交流側的諧波性能。

    1.3換流閥

    換流閥作為“心臟”存在于直流輸電系統中,江門換流站換流閥采用400+400kV配置,0-400kV為低端閥廳,400-800kV為高端閥廳,當直流輸電線路電壓升至800kV時,高、低端閥廳同時投運,如果任何一個閥廳出現問題,另一個橋可在400kV的電壓下繼續運行,此時輸電線路電壓為400kV。每個12脈動橋包括2個串列的6脈動橋。每個6脈動橋包括3個200kV直流電壓的雙重閥塔,每個雙重閥塔由2個單閥組成,單閥由2個晶閘管組件組成,每個雙重閥塔包含4個晶閘管組件。一個晶閘管組件包括兩個閥段,每個閥段由15個晶閘管單元、一臺閥電抗器(限制晶閘管開通時電流突增和關斷狀態下瞬態dU/dt)、一臺均壓電容(均衡閥塔內電壓、為RPU提供電源)組成。一個晶閘管單元包括晶閘管、TVM、直流均壓電阻(均衡晶閘管上的電壓)、阻尼電阻(減少阻尼電容和電感引起的震蕩,承擔阻尼電容電流)、阻尼電容(吸收晶閘管關斷時的沖擊電壓)等元件。

    1.4閥基電子(VBE)

    閥基電子(VBE)設備:對換流閥晶閘管進行觸發與監視,將各閥連接至控制和保護系統,包括晶閘管控制與監視系統(TC&M)模塊,光發射和接收模塊,控制保護恢復模塊(RPU),電源模塊和接口。晶閘管控制與監視系統(TC&M):接收來自極控制盒保護的信號,將這些信號轉換成觸發晶閘管的脈沖和對每個閥段內的控制脈沖,這些脈沖通過光發射板或RPU接口板轉換為光脈沖,通過光纜送到每只晶閘管和RPU。光發射板:從TC&M接收信號,將其轉換為觸發光脈沖。光接收板:接收每個TVM的回報信號,將信號傳送到TC&M系統。晶閘管電壓檢測(TVM):檢查晶閘管的閉鎖能力、檢測晶閘管能否開通、檢測晶閘管導通結束時刻、檢測晶閘管的過電壓保護電路是否能夠正常工作。反向恢復保護單元(RPU):每個閥段有一塊RPU板,RPU板串聯到閥組件均壓電容上,RPU板工作電源取自均壓電容兩端,晶閘管關斷且處于反向恢復時,VBE發送信號,如果RPU監測到閥段上正向電壓的上升速率超過允許值,就會向該閥組件中的MSC發出觸發光脈沖,控制閥段內所有晶閘管的導通。多路星形光耦合器(MSC):每個晶閘管組件安裝有一臺多路星形耦合器MSC,MSC包含兩個單元,一個單元對應一個閥段,MSC接收三路激光二極管發出的光脈沖,并均勻發送到與其相連的光觸發晶閘管。

    2結束語

    第3篇

    1.1高壓直流電網的技術發展

    歐洲專家介紹了近海岸直流電網示范工程的研究結論,這項研究工作包括近海岸間歇性能源,直流電網經濟,控制保護等問題。兩個著名硬件設備開發商參與了該項目,完成用于測試控制技術開發的低功率模擬器,并證明保護算法可用于直流電網,開發出了基于電力電子和機械技術創新的直流斷路器;另有專家提出了利用有限的直流斷路器操作,設計具有故障清除能力直流網絡,模擬研究表明使用直流斷路器可迅速隔離直流側電網故障,即可在點對點的電纜方案中使換流器繼續支撐交流網絡。針對此問題,中國專家發言指出可采用全橋型子模塊拓撲結構來清除直流側故障,實現與電網換相換流器(LCC)相同的功能。德國專家提出了關于采用電壓源換流器(VSC)的交直流混合架空線運行的特殊要求,雖然混合運行可提高現有輸電通道的容量,但存在一系列挑戰,包括利用可控、有效的方式實現多終端的操作管理,交直流系統的耦合效應,直流電壓和電流匹配原則以及機械特性差異等。韓國專家提出了用于晶閘管換流閥的新型合成運行試驗回路,該回路可向測試對象施加試驗用交、直流電壓和電流脈沖,并配置了可在試驗前給電容充電的可控硅開關,以及為試驗回路中晶閘管門極提供觸發能量的獨立高頻電源。

    1.2可再生能源的并網

    美國專家提出了近海岸高壓直流輸電系統設計方案的可靠性分析方法,研究了平均失效時間和平均修復時間等可靠性指標,并結合概率(蒙特卡洛)技術來評估風速波動對風電場的影響,且評估不同的系統互聯、系統冗余以及使用直流斷路器與否等技術方案的能量削減水平,提議將能量削減作為量化直流電網可靠性的指標。為設計人員選擇不同的技術方案、拓撲結構和保護方案提供依據。近海岸直流輸電換流站選址缺乏相關的標準、項目參考及工程經驗,難以給項目相關者提供合理的建議,并且可能會在項目的開發過程中引入風險。挪威專家針對此情況提出了一種從石油和天然氣行業經驗總結得出的技術資格要求,將有助于更加快速、高效、可靠地部署海上高壓直流輸電系統。

    1.3工程項目規劃、環境和監管

    哥倫比亞和意大利專家提出了哥倫比亞與巴拿馬電氣互聯優化設計方案,初步設計方案額定容量為600MW/±450kV,經過綜合比較,方案優化為300MW/±250kV,400MW/±300kV的雙極結構,并使用金屬回線作為最佳的技術和經濟解決方案。線路長度由原來的600km變為480km,但考慮到哥倫比亞輸電系統的強度問題,決定保留原來的輸電路線。貝盧蒙蒂第一條800kV特高壓直流輸電線路項目規劃構想了額定參數為2×4GW/±800kV雙極結構,直流線路長2092km,連接巴西北部與南部的直流輸電工程方案;印尼第一條Java-Sumatra直流輸電工程,額定參數為3GW/±500kV,雙極結構,直流線路包含架空線和海底電纜,考慮采用每極雙十二脈動換流器和備用海底電纜來提高系統的可靠性和可用率;太平洋直流聯接紐帶介紹了延長太平洋北部換流站壽命的最佳方案,將原有的換流器變為傳統的雙極雙換流器結構,但保留多余的2個換流器閥廳,現以3.8GW/±560kV為額定參數運行。

    1.4工程項目實施和運行經驗

    新西蘭和德國專家提出“新西蘭直流工程新增極3的挑戰和解決方案”,該工程不僅要保證設備能承受較高的地震烈度,保障其在弱交流系統中安全穩定運行,還要設計合理的設備安裝地點,以及新建極與原有極的一體化控制保護系統;巴西互聯電力系統的Madeira河項目中SanAntonio發電廠對400MW的背靠背中第一個模塊及額定參數為3.15GW/±600kV雙極中的第一極進行充電,工程因交流系統沒有足夠的短路容量而延遲工期,后通過安裝500kV/230kV聯接變壓器得以解決。印度的Champa-Kurukshetra±800kV/3GW高壓直流工程首次在特高壓輸電工程中采用金屬回線返回方式運行,輸電線路長1035km,遠期增加容量3GW,雙極功率傳輸容量可達6GW;法國與西班牙東部互聯案例中采用雙回VSC-HVDC饋入交流網絡,研究認為VSC-HVDC是首選的技術解決方案。

    2FACTS裝置及技術應用

    2.1可再生能源并網

    丹麥專家開發了多電平靜止同步補償器(STATCOM)通用電磁暫態模型,并基于倫敦Array風力發電廠多電平STATCOM現場測量和電磁暫態仿真結果對比研究進行了驗證,仿真結果與現場測量結果比較相符,并顯示出良好的相關性。

    2.2提高交流系統的性能

    加拿大專家提出了用于工程規劃的通用VSC模型,開發了基于PSS/E的穩態和動態模型。驗證了該模型部分交流側和直流側故障,結果表明具有良好的相關性,可在新的工程規劃和規范研究中應用。伊朗專家提出了分布式發電并網中基于自適應脈沖VSC的新型控制方法,與另外兩種控制方法相比,諧波補償和電能質量改善比較表明,分布式發電中諧波含量減少,從而減少諧波注入交流網絡。“智能電力線路(smartpowerline,SPL)實驗研究項目”引入了在架空輸電線路嵌入微型變電站的概念。電源交換模塊,保護模塊和在線監測系統可使輸電線路變得更智能,該技術還可以用于管理功率潮流和額外參數測量。

    2.3FACTS工程項目規劃、環境和監管

    印度專家進行了動態補償裝置在印度電力系統的配置及選址研究,以易受故障擾動影響的印度西部地區為重點研究區域,并提出了無功功率控制補償器的最佳位置和動態范圍。

    3電力電子設備的技術發展

    3.1直流斷路器、直流潮流控制器和故障電流限制裝置

    Alstom進行了120kV直流斷路器的開發和測試研究,該斷路器包括電力電子元器件,超快速機械斷路器,串聯電容器和避雷器等重要組成部分,可在5.3ms內開斷電流。ABB提出混合型直流輸電工程斷路器為未來高壓直流系統的解決方案,描述了混合直流斷路器的詳細功能、控制方式和設計原則,混合斷路器的核心部件同樣為超快速機械斷路器。ABB的專家還提出了低損耗機械直流斷路器在高壓直流電網中的應用,其可替代混合直流斷路器,開斷參數最大為10kA/5ms。斷路器包含電磁制動器、并聯諧振電路,已完成一個額定參數為80kV的斷路器樣機,并成功通過了開斷目標電流的試驗。

    3.2新型半導體設備和換流器拓撲

    精品推薦
    主站蜘蛛池模板: 一区二区三区美女视频| 国产香蕉一区二区三区在线视频| 78成人精品电影在线播放日韩精品电影一区亚洲 | 国产精品女同一区二区久久| 久久高清一区二区三区| 在线|一区二区三区四区| 国产福利电影一区二区三区,亚洲国模精品一区 | 末成年女A∨片一区二区| 国产在线不卡一区| 无码国产精品一区二区免费式直播| 日韩毛片一区视频免费| 99精品国产一区二区三区2021| 亚洲午夜精品第一区二区8050| 天堂va在线高清一区 | 中文字幕一区二区三区乱码| 日韩精品一区二区三区中文版 | 国产在线aaa片一区二区99| 精品一区二区三区中文| 在线免费一区二区| 亚洲AV无码片一区二区三区| 亚洲国产精品一区二区三区久久 | 蜜桃视频一区二区三区在线观看| 在线播放精品一区二区啪视频| 亚洲国产精品第一区二区三区| 亚洲av永久无码一区二区三区 | 色婷婷综合久久久久中文一区二区| 波多野结衣电影区一区二区三区| 一区二区和激情视频| 精品国产乱码一区二区三区| 日本在线一区二区| 亚洲av一综合av一区| 亚洲天堂一区在线| 日本一区二区三区在线网 | 好吊视频一区二区三区| 精品日韩在线视频一区二区三区| 日韩综合无码一区二区| 精品福利一区二区三区免费视频| 国产裸体歌舞一区二区| 痴汉中文字幕视频一区| 女人和拘做受全程看视频日本综合a一区二区视频 | 日本夜爽爽一区二区三区|